

Republic of the Philippines CIVIL AVIATION AUTHORITY OF THE PHILIPPINES

ADVISORY CIRCULAR

STRENGTH RATING Of Aerodrome pavements

AC AGA-ACR-PCR-01-2024

Aerodrome & Air Navigation Safety Oversight Office (AANSOO) Office of the Director General Civil Aviation Authority of the Philippines MIA Road, Pasay City 1300

01 JUL 2024

Date of Approval

00

Advisory Circulars (AC) are intended to provide recommendations and guidance to illustrate a means, but not necessarily the only means, of complying with regulatory requirements, or to explain certain regulatory requirements by providing interpretative and explanatory materials.

CAAP will generally accept that when the provisions of an Advisory Circular have been met, compliance with the relevant regulatory obligations has been satisfied.

Where an AC is referred to in a "Note" within regulatory documentation, the AC remains as guidance material.

ACs should always be read in conjunction with the

referenced regulations.

AC AGA-ACR-PCR-01-2024 STRENGTH RATING OF AERODROME PAVEMENTS

I. PURPOSE

The purpose of this AC is to provide aerodrome operators with guidance specifically on the design and evaluation of pavements used by aircrafts having a maximum take-off weight of more than 5,700 and the reporting of runway, taxiway and apron pavement strength in accordance with the new International Civil Aviation Organization (ICAO) strength rating method (ACR-PCR).

II. CANCELLATION OF AC 139-04-A

This AC cancels AC 139-04-A, Pavement Strength and Overload Considerations, effective November 28, 2024.

III. REFERENCES

2.

1. Regulations

a) CAAP Manual of Standards for Aerodromes

- International Civil Aviation Organization documents
 - a) ICAO Document 9157 Aerodrome Design Manual Part 1: Runways; and
 - b) ICAO Document 9157 Aerodrome Design Manual Part 2: Pavements
- 3. International Organization Guidance Material

a) FAA AC 150/5335-5D

IV. ACKNOWLEDGEMENT

AANSOO of the Civil Aviation Authority of the Philippines acknowledges the valuable information provided by ICAO through its published documents and other related guidance materials and best practices developed by international organizations.

V. COPIES OF THIS AC

AC AGA-ACR-PCR-01-2024 is available and can be downloaded at the official website of CAAP at <u>www.caap.gov.ph</u>. A printed copy of this AC can be requested from the Regulatory Safety Standards Division (RSSD) of the Aerodrome and Air Navigation Safety Oversight Office (AANSOO), Civil Aviation Authority of the Philippines, located at MIA Road corner, Ninoy Aquino Avenue, Pasay City, Metro Manila, 1300 with Tel. No.: (02) 8246-4988.

Captain Manuel Antonio L. Tamayo Director General Civil Aviation Authority of the Philippines

FOREWORD

In 2009, ICAO established a Study Group to investigate updating the international method of reporting pavement strengths. The study group was directed to revise the method, and ICAO adopted with Amendment 15 to Annex 14, the Aircraft Classification Rating - Pavement Classification Rating (ACR-PCR) method. Implementation by all member States, including the Philippines, shall commence between July 2020 and November 2024.

On the transition of the new rating system, CAAP will adopt the necessary provisions and require all aerodrome operators to submit and publish their ACR-PCR values in the AIP not later than November 28, 2024.

CAAP recommends the guidelines and specifications in this AC for reporting airport pavement strength using the standardized Aircraft Classification Rating-Pavement Classification Rating (ACR-PCR) method for all paved runways, taxiways, and aprons at all airports

Aerodrome operators are required to provide strength rating of aerodrome pavements using the ACR-PCR method and publish the rating in the Philippine AIP. This advisory circular briefly explains the ACR-PCR method and offers guidelines on what degree of overloading may be considered acceptable for an aerodrome pavement.

TABLE OF CONTENTS

PURPOSEi						
CAN	NCELLAT	TON OF AC 139-04-A	i			
REF	ERENCE	S	i			
ACł	NOWLE	DGEMENT	i			
COI	PIES OF ⁻	THIS AC	i			
FOF	REWORD		ii			
TAE	BLE OF C	ONTENTS	iii			
1.	DEFINIT	TIONS AND ACRONYMS	1-4			
	1.1	Definitions	1-4			
	1.2	Acronyms	2-4			
2.	ACR-PC	R METHOD	1-8			
	2.1	Concept of the ACR-PCR method	1-8			
	2.2	Determination of ACR-PCR values	2-8			
	2.3	Determination of ACR	2-8			
	2.4	Determination of PCR	4-8			
	2.4.1	Reporting the PCR	5-8			
	2.4.2	Method Used to Determine PCR	7-8			
	2.4.3	Example PCR Reporting	8-8			
3.	Compu	ter Programs (ICAO-ACR 1.4 and FAARFIELD 2.1)	1-4			
	3.1	Using the ICAO-ACR Program to calculate ACR	1-4			
	3.2	FAARFIELD 2.1	2-4			
	3.2.1	Internal Aircraft Library	2-4			
	3.2.2	External Aircraft Library	2-4			
	3.2.3	Procedure for Technical Evaluation (T) PCR	2-4			
4.	OVERLO	DAD OPERATIONS	1-4			
	4.1	ICAO Pavement Overload Evaluation Guidance	1-4			
	4.2	Overload Technical Analysis	2-4			
	4.3	Overload Guidance	2-4			
5.	PAVEM	ENTS FOR LIGHT AIRCRAFT	1-2			
APF	PENDIX					
	A		1-4			
	A.1		1-4			
	A.Z		1-4			
	B 1	PCR DETERMINATION EXAMPLES	1-34			
	B.I	The Using Aircraft Method	1-34			
	B.Z	Using Aircraft Example for Flexible Pavements	2-34 4 24			
	В.3 D 4	Using Air Crait	4-34			
	D,4 R 5	Tachnical Evaluation for Elevible Methods	0-54 6_24			
	0.0 R 6	Technical Evaluation Examples for Elevible Payaments	0-54 6_24			
	B.0 R 7	Technical Evaluation for Digid Payaments	0-34 17-24			
	B.7 R 8	Technical Evaluation Example for Rigid Payements	18-24			
	с. С	REPORTING CHANGES TO CERTAIN AIRPORT RUNWAY DATA	10-04			
	~	ELEMENTS	1-8			

AC AGA-ACR-PCR-01-2024 STRENGTH RATING OF AERODROME PAVEMENTS

	MASTER	1-10
D	MAXIMUM AIRCRAFT GROSS WEIGHT TABLES FOR AIRPORT	1_10
C.3	Assigned Aircraft Gross Weight Data	2-8
C.2	Pavement Classification Rating (PCR)	1-8
C.1	Allowable Gross Weight	1-8

CHAPTER 1. DEFINITIONS AND ACRONYMS

1.1 Definitions

Terms that have specific meaning within this AC are defined below.

Aggregate. General term for the mineral fragments or particles which, through the agency of a suitable binder, can be combined into a solid mass, e.g., to form a pavement.

Aircraft Classification Number (ACN). A number expressing the relative effect of an aircraft on a pavement for a specified standard subgrade strength.

Aircraft classification rating (ACR). A number expressing the relative effect of an aircraft on a pavement for a specified standard subgrade strength.

Asphalt. Highly viscous binder occurring as a liquid or semi-solid form of petroleum, also referred as bitumen. May be found in natural deposits or may be a refined product.

Base course (or base). The layer or layers of specified or selected material of designed thickness placed on a subbase or subgrade to support a surface course.

Bearing strength. The measure of the ability of a pavement to sustain the applied load, also referred as bearing capacity or pavement strength.

California Bearing Ratio (CBR). The bearing ratio of soil determined by comparing the penetration load of the soil to that of a standard material. The method covers evaluation of the relative quality of subgrade soils but is applicable to sub-base and some base course materials.

Note. — *The Standard Test Method for CBR of Laboratory-Compacted Soils is an ASTM standard (ASTM D1883).*

Flexible pavement. A pavement structure that maintains intimate contact with and distributes loads to the subgrade and depends on aggregate interlock, particle friction, and cohesion for stability.

Lateral wander. The path of a given aircraft will deviate relative to the path centered on the longitudinal axis of the pavement in question in a statistically predictable pattern. This phenomenon is referred to as lateral wander.

Modulus of elasticity. The modulus of elasticity of a material is a measure of its stiffness. It is equal to the stress applied to it divided by the resulting elastic strain.

Overlay. An additional surface course placed on existing pavement either with or without intermediate base or sub-base courses, usually to strengthen the pavement or restore the profile of the surface.

Pavement classification number (PCN). A number expressing the bearing strength of a pavement.

Pavement classification rating (PCR). A number expressing the bearing strength of a pavement for unrestricted operations.

Pavement structure (or pavement). The combination of sub-base, base course, and surface course placed on a subgrade to support the traffic load and distribute it to the subgrade.

Poisson's ratio. The ratio of transverse to longitudinal strains of a loaded specimen.

Portland cement concrete (PCC). A mixture of graded aggregate with Portland cement and water.

Rigid pavement. A pavement structure that distributes loads to the subgrade having as its surface course a Portland cement concrete slab of relatively high bending resistance, also referred as concrete pavement.

Sub-base course. The layer or layers of specified selected material of designed thickness placed on a subgrade to support a base course.

Subgrade. The upper part of the soil, natural or constructed, which supports the loads transmitted by the pavement, also referred as the formation foundation.

Surface course. The top course of a pavement structure, also referred as wearing course.

1.2 Acronyms

The acronyms and abbreviations used in this AC are listed below.

Acronym	Description
2D	Dual tandem
2D/2D	Multiple dual-tandem landing gear
AC	Advisory Circular
ACAP	Airplane Characteristics for Airport Planning
ACN	Aircraft Classification Number
ACR	Aircraft Classification Rating
ADIP	Airport Data and Information Portal

AC AGA-ACR-PCR-01-2024 STRENGTH RATING OF AERODROME PAVEMENTS

AIP	Aeronautical Information Publication
AIS	Aeronautical Information Service
AMR	Airport Master Record
ASTM	ASTM International
CBR	California Bearing Ratio
CDF	Cumulative Damage Factor
CG	Centre of Gravity
cm	Centimeter
D	Dual wheel landing gear
DSWL	Derived Single Wheel Load
E	Elastic modulus
FAA	United States Federal Aviation Administration
FAARFIELD	FAA Rigid and Flexible Iterative Elastic Layer Design
HMA	Hot Mix Asphalt
HWD	Heavy Weight Deflectometer
ICAO	International Civil Aviation Organization
LEA	Layered Elastic Analysis
MAGW	Maximum Allowable Gross Weight
MPa	Megapascal
P/TC	Passes to Traffic Cycles
PCC	Portland Cement Concrete (also Hydraulic Cement Concrete or
	Cement Concrete)
PCN	Pavement Classification Number
PCR	Pavement Classification Rating
S	Single wheel landing gear
SCI	Structural Condition Index

INTENTIONALLY LEFT BLANK

CHAPTER 2. ACR-PCR METHOD

2.1 Concept of the ACR-PCR method

- 2.1.1 The ACR-PCR method is meant only for the publication of pavement strength data in aeronautical information publications (AIPs). It is not intended for the design or evaluation of pavements, nor does it contemplate the use of a specific method by the aerodrome operator for either the design or evaluation of pavements.
- 2.1.2 There is no mathematical correlation between the previous ICAO pavement strength reporting ACN-PCN and the new ICAO ACR-PCR system.
- 2.1.3 The ACR-PCR system is structured so a pavement with a particular PCR value can support an aircraft that has an ACR value equal to or less than the pavement's PCR value. This is possible because ACR and PCR values are computed using the same technical basis.
- 2.1.4 The use of the standardized method of reporting pavement strength applies only to pavements at public and private use airports with bearing strengths of 5,700 kg or more. The method of reporting pavement strength for pavements of less than 5,700 kg is to only report the gross weight and gear configuration of the aircraft that can be accommodated.
- 2.1.5 The ACR-PCR method also envisages the reporting of the following information in respect of each pavement:
 - a) pavement type;
 - b) subgrade category;
 - c) maximum allowable tire pressure; and
 - d) Pavement evaluation method used.
- 2.1.6 The data obtained from the characteristics listed above are primarily intended to enable aircraft operators to determine the permissible aircraft types and operating masses, and the aircraft manufacturers to ensure compatibility between airport pavements and aircraft under development.
- 2.1.7 The airport authority should, whenever possible, report pavement strength based on a technical evaluation of the pavement. Details of the technical evaluation process are included in 3.6. If, due to financial or engineering constraints, a technical evaluation is not feasible, then using the aircraft method must be used for reporting pavement strength.

2.2 Determination ACR-PCR Values

2.2.1 The sole mathematical model used in the ACR-PCR method is the layered elastic analysis (LEA). The LEA model assumes that the pavement structure, whether flexible or rigid, can be represented by homogeneous, elastic, isotropic layers arranged as a stack. Each layer in the system is characterized by an elastic modulus Ei, Poisson's ratio vi, and a uniform layer thickness ti. Layers are assumed to be of infinite horizontal extent and the bottom or subgrade layer is assumed to extend vertically to infinity (i.e. the subgrade is modelled as an elastic half-space). Due to the linear elastic nature of the model, individual wheel loads can be summed to obtain the combined stress and strain responses for a complex, multiple-wheel aircraft gear load. The use of the LEA model permits the maximum correlation to worldwide pavement design methods.

2.3 Determination of ACR

- 2.3.1 The ACR of an aircraft is numerically defined as two times the derived single wheel load, where the derived single wheel load is expressed in hundreds of kilograms. Single wheel tire pressure is standardized at 1.50 MPa.
- 2.3.2 ACRs of aircraft are computed under the ACR-PCR method as shown in Figure 2-1.
- 2.3.3 ACRs can be obtained from these relevant document and software:
 - a) Aircraft characteristics for airport planning (published by the aircraft manufacturers); and
 - b) ICAO-ACR computer program (current version).
- 2.3.4 The aircraft manufacturer provides the official computation of an ACR value. Computation of the ACR requires detailed information on the operational characteristics of the aircraft, such as maximum aft center of gravity, maximum ramp weight, wheel spacing, and tire pressure.
- 2.3.5 Appendix 2 of the ICAO Aerodrome Design Manual, Part 3, Pavements, Third Edition, provides procedures for determining the Aircraft Classification Rating (ACR). FAA developed ICAO-ACR 1.4 to calculate ACRs in accordance with the ICAO standards. ICAO-ACR 1.3 is used internally by FAARFIELD 2.0 to calculate ACR's.

Figure 2-1. ACR Computations

2.3.6 Rigid and Flexible ACR

For rigid and flexible pavements, the aircraft landing gear support requirements are determined by the layer elastic method for each subgrade support category.

2.3.6.1 <u>Rigid Pavements</u>

To standardize the ACR calculation for rigid pavements, a standard stress is stipulated as σ = 399 psi (2.75 Mpa). Note the working stress used for the design has no relationship to the standard stress used for pavement strength reporting.

2.3.6.2 Flexible Pavements

To standardize the ACR calculation for flexible pavement the derived single wheel load is calculated at a constant pressure of 218 psi (1.50 Mpa) relative to a total thickness t computed for 36,500 passes of the aircraft.

2.3.7 <u>Subgrade Category</u>

The ACR-PCR method adopts four standard levels of subgrade strength for rigid and flexible pavements. These standard categories

Subgrade Strength Category	Subgrade Support E (Elastic Modulus) psi (MPa)	Represents E (Elastic Modulus) psi (MPa)	Code Designation
High	29008 (200)	E≥21,756 (≥150)	А
Medium	17405 (120)	E≥14,504 <21,756 (≥100 <150)	В
Low	11603 (80)	E≥8,702 <14,504 (≥60 <100)	С
Ultra Low	7252 (50)	E < 8,702 (< 60)	D

are used to represent a range of subgrade conditions as shown in Table 2-1.

Table 2-1. Standard Subgrade Conditions for ACR Calculations

2.4 Determination of PCR

ICAO Document 9157 Part 3 provides a model procedure for PCR determination and publication, using the CDF concept (refer to 1.1.4 in ICAO Doc 9157 Part 3). States may develop their own methods for PCR determination, consistent with the overall parameters of the ACR-PCR method.

The strength of a pavement is reported in terms of the load rating of the aircraft which the pavement can accept on an unrestricted basis. The term unrestricted operations in the definition of PCR does not mean unlimited operations. Unrestricted refers to the relationship of PCR to the aircraft ACR, and that it is permissible for an aircraft to operate without weight restriction when the PCR is greater than or equal to the ACR. The term unlimited operations do not take into account pavement life. The PCR to be reported is such that the pavement strength is sufficient for the current and future traffic analyzed, and should be reevaluated if traffic changes significantly. A significant change in traffic would be indicated by the introduction of a new aircraft type or an increase in current aircraft traffic levels not accounted for in the original PCR analysis.

The PCR value should not be used for pavement design or as a substitute for evaluation. Pavement design and evaluation are complex engineering problems that require detailed analysis. They cannot be reduced to a single number. The PCR rating system uses a continuous

scale to compare pavement capacity where higher values represent pavements with larger load capacity.

<u>CDF Concept</u>

The CDF is the amount of the structural fatigue life of a pavement that has been used up. It is expressed as the ratio of applied load repetitions to allowable load repetitions to failure, or, for one aircraft and constant annual departures where a coverage is one application of the maximum strain or stress due to load on a given point in the pavement structure.

Note 1.— When CDF = 1, the pavement subgrade will have used all of its fatigue life.

Note 2.— When CDF < 1, the pavement subgrade will have some remaining life and the value of CDF will give the fraction of the life used.

Note 3.— When CDF > 1, all of the fatigue life will have been used and the pavement subgrade will have failed.

2.4.1 <u>Reporting the PCR</u>

The PCR system uses a coded format to maximize the amount of information contained in a minimum number of characters and to facilitate computerization. The PCR is reported as a five-part code where the following codes are ordered and separated by forward slashes: Numerical PCR value / Pavement type / Subgrade category / Allowable tire pressure / Method used to determine the PCR.

2.4.1.1 <u>Pavement Type</u>

The PCR system uses a coded format to maximize the amount of information contained in a minimum number of characters and to facilitate computerization. The PCR is reported as a five-part code where the following codes are ordered and separated by forward slashes: Numerical PCR value / Pavement type / Subgrade category / Allowable tire pressure / Method used to determine the PCR.

Pavement Type	Pavement Code
Flexible	F
Rigid	R

Table 2-2. Pavement Codes for Reporting PCR

2.4.1.1.1 Flexible Pavement

Flexible pavements support loads through bearing rather than flexural action. They comprise several layers of select materials designed to gradually distribute loads from the surface to the layers beneath. The design ensures that load transmitted to each successive layer does not exceed the layer's load-bearing capacity.

2.4.1.1.2 <u>Rigid Pavement</u>

Rigid pavements employ a single structural layer, which is very stiff or rigid in nature, to support the pavement loads. The rigidity of the structural layer and resulting beam action enable rigid pavement to distribute loads over a large area of the subgrade. The load-carrying capacity of a rigid structure is highly dependent upon the strength of the structural layer, which relies on uniform support from the layers beneath.

2.4.1.1.3 <u>Composite Pavement</u>

Various combinations of pavement types and stabilized layers can result in complex pavements that could be classified as between rigid or flexible. A pavement section may comprise multiple structural elements representative of both rigid and flexible pavements. Composite pavements are most often the result of pavement surface overlays applied at various stages in the life of the pavement structure. If a pavement is of composite construction, the pavement type should be reported as the type that most accurately reflects the structural behavior of the pavement. FAARFIELD will consider a rigid pavement overlaid with flexible to be a rigid pavement until the overlay thickness matches the rigid thickness. It is good practice to include a note stating that the pavement is of composite construction, and to note what the wearing surface is.

2.4.1.2 <u>Subgrade Strength Category</u>

As discussed in paragraph 2.3.7, there are four standard subgrade strengths identified for calculating and reporting ACR or PCR values. Table 2-1 lists the values for rigid and flexible pavements.

2.4.1.3 <u>Allowable Tire Pressure</u>

Table 2-3 lists the allowable tire pressure categories identified by the ACR-PCR system. The tire pressure codes apply equally to rigid or flexible pavement sections; however, the application of the allowable tire pressure differs substantially for rigid and flexible pavements.

AC AGA-ACR-PCR-01-2024 STRENGTH RATING OF AERODROME PAVEMENTS

Category	Code	Tire Pressure Range
Unlimited	w	No pressure limit
High	х	Pressure limited to 254 psi (1.75 MPa)
Medium	Medium Y Pressure limited to 181 psi (1.25 MPa)	
Low	Z	Pressure limited to 73 psi (0.50 MPa)

Table 2-3. Tire Pressure Codes for Reporting PCR

2.4.2 <u>Method Used to Determine PCR</u>

The PCR system recognizes two pavement evaluation methods. If the evaluation represents the results of a technical study, the evaluation method should be coded T. If the evaluation is based on "Using Aircraft" experience, the evaluation method should be coded U. Technical evaluation implies that some form of technical study and computation were involved in the determination of the PCR. Using Aircraft evaluation means the PCR was determined by selecting the highest ACR among the aircraft currently using the facility and not causing pavement distress.

2.4.2.1 Using Aircraft Experience

The Using Aircraft Experience is a procedure where ACR values for all aircraft currently permitted to use the pavement facility are determined and the largest ACR value is reported as the PCR. This method is easy to apply and does not require detailed knowledge of the pavement structure. The subgrade support category is not a critical input when reporting PCR based on the Using Aircraft Experience. The recommended subgrade support category when information is not available should be Category B. See Appendix B, paragraph B.1 for an example of the Using Aircraft Experience.

The accuracy of this method is dependent upon having records of past aircraft traffic. Significant over-estimation of the pavement capacity can result if an excessively damaging aircraft, which uses the pavement on a very infrequent basis, is used to determine the PCR. Likewise, significant under-estimation of the pavement capacity can lead to uneconomic use of the pavement by preventing acceptable traffic from operating. Although there are no minimum limits on frequency of operation before an aircraft is considered part of the normal traffic, the reporting agency must use a rational approach to avoid overstating or understating the pavement capacity. Use a consistent method based on a design period minimum frequency of 250 annual departures. Use of the Using Aircraft Experience is discouraged on a long-term basis due to the concerns listed above.

2.4.2.2 <u>Technical Evaluation Method</u>

The accuracy of a technical evaluation is better than that produced with the Using Aircraft procedure but requires additional information. Pavement evaluation may require a combination of on-site inspections, load-bearing tests, and engineering judgment. It is common to think of pavement strength rating in terms of ultimate strength or immediate failure criteria. However, pavements are rarely removed from service due to instantaneous structural failure. A decrease in the serviceability of a pavement is commonly attributed to increases in surface roughness or localized distress, such as rutting or cracking. Determination of the adequacy of a pavement structure must not only consider the magnitude of pavement loads but the impact of the accumulated effect of traffic over the intended life of the pavement. To determine a technical PCR requires information on: (1) aircraft traffic composition and frequency, (2) thickness, material type and strength of each layer of pavement structure and (3) elastic modulus of subgrade. For examples on technical evaluation to determine PCR see Appendix B paragraph B.4.

2.4.3 Example PCR Reporting

An example of a PCR code is 800/R/B/W/T—with:

- a) 800 expressing the PCR numerical value;
- b) R for rigid pavement;
- c) B for medium strength subgrade;
- d) W for high allowable tire pressure; and
- e) T for a PCR value obtained by a technical evaluation.

CHAPTER 3. COMPUTER PROGRAMMES (ICAO-ACR 1.4 and FAARFIELD 2.1)

To facilitate the use of the ACR-PCR system, the FAA developed a software application, ICAO-ACR 1.4, that calculates ACR values using the procedures and conditions specified by ICAO and can be used to determine PCR values following the procedures in this AC. The application is included within FAARFIELD 2.1 the FAA pavement design program.

These public domain programs ICAO-ACR and FAARFIELD are available at:

- 1) <u>https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-</u> <u>Publications/Airport-Safety-Detail/icao-acr-14</u>
- 2) <u>https://airporttech.tc.faa.gov/Products/Airport-Safety-Papers-</u> <u>Publications/Airport-Safety-Detail/faarfield-21</u>

3.1 Using the ICAO-ACR Program to Calculate ACR

Using the ICAO-ACR program to calculate ACR values is visually interactive and intuitive, see Figure 3-1.

- 1) The user selects:
 - a) Pavement Type, Flexible or Rigid.
 - b) Airplane Group and Airplane (adjusting weight and percent GW if necessary.
- 2) Calculate ACR

The program then calculates ACR values for the 4 subgrade categories.

Pave	ement Type Weicht (bur)	 Field Pigd 365.1 	447	Select	t Arplane Group Arbus Arblane A300-84	(atd v)	
P	ercent GW 0.540			Calculate ACR *			
Numbe	er of Wheels						
Tire Pr	essure \$00	216	31	C Darlay Sele	d Wheels (SW)	177 Matrice	
	Wheel Co	oordinates (in)	_		5270530474	1.546.00773	
No	K	Y	^	Subgrade Category	Subgrade Modulua ipe]	Rexière ACR Number	ACR Thickness t an)
1	197.23	0.00		D	7.251.89	737.81	35.71
-	-160.72	55.00		c	11,603.02	545.79	27,21
-	160.73	55.00		6	17,404.53	496.68	22.04
4	197.23	0.00		A	29.007.55	413.29	16.82
-							
100	Cort 2			Calculati	on time: 2.42 sec.		
Parmet	eGW.2						
etter i	f tibusis 2						
e Florad	101220						
_	Witness Courses	instant (m)	_				
No	х	¥					
_							

Figure 3-1. Screen Shot ICAO-ACR

3.2 FAARFIELD 2.1

3.2.1 Internal Aircraft Library

FAARFIELD 2.1 contains an internal library of aircraft covering most large commercial and U.S. military aircraft currently in operation. The internal library is based on aircraft information provided directly by aircraft manufacturers or obtained from Aircraft ACAP Manuals. The default characteristics of aircraft in the internal library represent the ICAO standard conditions for calculation of ACR. These characteristics include center of gravity at the maximum aft position for each aircraft. Changes to characteristics of internal library aircraft are not permanent unless the internal library aircraft is added to an external library.

3.2.2 External Aircraft Library

FAARFIELD 2.0 allows for an external aircraft library where characteristics of the aircraft can be changed and additional aircraft added as desired. Functions permit users to modify the characteristics of an aircraft and save the modified aircraft in the external library. There are no safeguards in the FAARFIELD 2.0 program to assure that aircraft parameters in the external library are feasible or appropriate. The user is responsible for assuring all data is correct.

When saving an aircraft from the internal library to the external library, the FAARFIELD 2.0 program will calculate the tire contact area based upon the gross load, maximum aft center of gravity, and tire pressure. This value is recorded in the external library and is used for calculating the pass-to-coverage (P/C) ratio in the pavement thickness mode. Since the tire contact area is constant, the P/C ratio is also constant in the pavement thickness mode. This fixed P/C ratio is used for converting passes to coverages for pavement thickness determination and equivalent aircraft operations.

3.2.3 Procedure for Technical Evaluation (T) PCR

The PCR procedure considers the actual pavement characteristics at the time of the evaluation — considering the existing pavement structure, and the aircraft traffic forecast to use the pavement over its design structural life (for new pavement construction) or estimated remaining structural life (for in service pavements). The PCR should be valid only for this usage period. In case of major pavement rehabilitation or significant traffic changes compared to the initial traffic, a new evaluation should be performed.

The technical evaluation should be used when pavement characteristics and aircraft mix are consistently known and documented.

The PCR procedure involves the following steps:

- 1. Collect all relevant pavement data (layer thicknesses, elastic moduli and Poisson's ratio of all layers, using projected aircraft traffic) using the best available sources;
- 2. Define the aircraft mix by aircraft type, number of departures (or operations consistent with pavement design practices), and aircraft weight that the evaluated pavement is expected to experience over its design or estimated remaining structural life;
- 3. Compute the ACRs for each aircraft in the aircraft mix at its operating weight and record the maximum ACR aircraft;
- 4. Compute the maximum CDF of the aircraft mix and record the value;
- 5. Select the aircraft with the highest contribution to the maximum CDF as the critical aircraft. This aircraft is designated AC(i), where i is an index value with an initial value 1. Remove all aircraft other than the current critical aircraft AC(i) from the traffic list;
- 6. Adjust the annual departures of the critical aircraft until the maximum aircraft CDF is equal to the value recorded in (4). Record the equivalent annual departures of the critical aircraft;
- 7. Adjust the critical aircraft weight to obtain a maximum CDF of 1.0 for the number of annual departures obtained at step (6). This is the Maximum Allowable Gross Weight (MAGW) for the critical aircraft;
- 8. Compute the ACR of the critical aircraft at its MAGW. The value obtained is designated as PCR(i);
- 9. If AC(i) is the maximum ACR aircraft from step 3, then skip to step 13. If not continue to Step 10;
- Remove the current critical aircraft AC(i) from the traffic list and reintroduce the other aircraft not previously considered as critical aircraft. The new aircraft list, which does not contain any of the previous critical aircraft, is referred to as the reduced aircraft list. Increment the index value (i = i+1);
- 11. Compute the maximum CDF of the reduced aircraft list and select the new critical aircraft AC(i);
- 12. Repeat steps 5-9 for AC(i). In step 6, use the same maximum CDF as computed for the initial aircraft mix to compute the equivalent annual departures for the reduced list; and
- 13. The PCR to be reported is the maximum value of all computed PCR(i). The critical aircraft is the aircraft associated with this maximum value of PCR(i).

A flowchart of the above procedure is shown in Figure 3-2. The purpose of steps 10 to 13 is to account for certain cases with a large number of departures of a short/medium-range aircraft (such as the B737) and a relatively small number of departures of a long-range aircraft (e.g. the A350). Without these steps, the smaller aircraft would generally be identified as critical, with the result that the PCR would require unreasonable operating weight restrictions on larger aircraft (unreasonable because the design traffic already included the large aircraft). Note that if the initial critical aircraft is also the aircraft in the list with the maximum ACR at operating weight, then the procedure is completed in one iteration, with no subsequent reduction to the traffic list.

Figure 3-2. Flowchart of recommended PCR computation procedure

CHAPTER 4. OVERLOAD OPERATIONS

4.1 ICAO Pavement Overload Evaluation Guidance

- 4.1.1 In the life of a pavement, it is possible that either the current or the future traffic will load the pavement in such a manner that the assigned pavement rating is exceeded. ICAO provides a simplified method to account for minor pavement overloading in which the overloading may be adjusted by applying a fixed percentage to the existing PCR.
- 4.1.2 The ICAO procedure for overload operations is based on minor or limited traffic having ACRs that exceed the reported PCR. Loads that are larger than the defined PCR will shorten the pavement design life, while smaller loads will use up the life at a reduced rate. With the exception of massive overloading, pavements do not suddenly or catastrophically fail. As a result, occasional minor overloading is acceptable with only limited loss of pavement life expectancy and relatively small acceleration of pavement deterioration.
- 4.1.3 The following guidelines are recommended when evaluating overloads:
 - 1. For flexible or rigid pavements, occasional traffic by aircraft with an ACR not exceeding 10 percent above the reported PCR should not adversely affect the pavement. For example, a pavement with PCR=600 can support some limited traffic of aircraft with ACR=660.
 - 2. The annual number of overload traffic should not exceed approximately 5 percent of the total annual aircraft traffic. There is no exact guidance for choosing a number of operations that represents 5 percent.
 - 3. Overloads should not normally be permitted on pavements already exhibiting signs of structural distress, during periods when the strength of the pavement or its subgrade could be weakened by water.
 - 4. When overload operations are conducted, the airport owner should regularly inspect the pavement condition. Periodically the airport owner should review the criteria for overload operations. Excessive repetition of overloads can cause a significant reduction in pavement life or accelerate when a pavement will require a major rehabilitation.
- 4.1.4 These criteria provide a consistent, repeatable process the airport owner can use to monitor the impact of these overload operations on the pavement in terms of pavement life reduction or increased maintenance requirements. This discusses methods for making overload allowances for both flexible and rigid pavements that will clearly indicate these effects and will give the authority the ability to determine the impact both economically and in terms of pavement life.

4.2 Overload technical analysis

- 4.2.1 Overloads in excess of 10 per cent may be considered on a case-by-case basis when supported by a more detailed technical analysis. When overload operations exceed allowances, a pavement analysis is required for granting the proposed additional loads, which was not scheduled in the initial pavement design. In those cases, the pavement analysis should determine how the overload operation contributes to the maximum CDF when it is mixed with the actual aircraft mix. Indeed, the ACR as a relative indicator, even if exceeding the reported PCR, cannot predict how the overload aircraft will affect the pavement structural behavior and/or its design life, since it will be strongly dependent of its offset to the location of the maximum CDF produced by the aircraft mix (critical offset).
- 4.2.2 The pavement analysis would then mean determining the number of permitted overload operations so that the CDF of the entire aircraft mix, including the overload aircraft, remains in the tolerances agreed by the relevant authority.

4.3 Overload Guidance

- 4.3.1 The overload evaluation guidance in this section applies primarily to flexible and rigid pavements that have PCR values that were established by the technical method. Pavements that have ratings determined by the Using Aircraft Method can use the overload guidelines provided very frequent pavement inspection procedures are followed.
- 4.3.2 The adjustments for pavement overloads start with the assumption that some of the aircraft in the traffic mix have ACRs that exceed the PCR. If a technical analysis was performed, then most of the necessary data already exists to perform an examination of overloading.
- 4.3.3 The recommended PCR is not adequate for the traffic mix when the Total CDF>1. Airports have three options when evaluating what pavement strength rating to publish:
 - 1. Let the PCR remain as derived from the technical evaluation method, but retain local knowledge that there are some aircraft in the traffic mix that can be allowed to operate with ACRs that exceed the published PCR or at a reduced weight to not exceed the PCR.
 - 2. Provide for an increased PCR by adding an overlay or by reconstruction to accommodate aircraft with higher ACRs.
 - 3. Adjust the PCR upward to that of the aircraft with the highest ACR but recognize the need to expect possible severe maintenance. This will

result in earlier and increased costs for reconstruction or overlay projects. This is in essence changing the PCR rating to a using rating, and potentially reducing the remaining pavement life.

INTENTIONALLY LEFT BLANK

CHAPTER 5. PAVEMENTS FOR LIGHT AIRCRAFT

Light aircraft are those having a mass of 5 700 kg or less. These aircraft have pavement requirements less than that of many highway trucks. Technical evaluations of those pavements can be made but an evaluation based on using aircraft is satisfactory. It is worth noting that, at some airports, service vehicles such as fire trucks, or fuel trucks may be more critical than aircraft. Since nearly all light aircraft have single-wheel undercarriage legs, there is no need for reporting subgrade categories. However, since some helicopters and military trainer aircraft within this mass range have quite high tire pressures, limited quality pavements may need to have tire pressure limits established.

In evaluating pavements meant for light aircraft — 5 700 kg mass and less — it is unnecessary to consider the geometry of the undercarriage of aircraft or how the aircraft load is distributed among the wheels. Thus, subgrade class and pavement type need not be reported, and only the maximum allowable aircraft mass and maximum allowable tire pressure need to be determined and reported. For these, the foregoing guidance on techniques for "using aircraft" evaluation should be followed.

Because the 5 700 kg limit for light aircraft represents pavement loads only two-thirds or less of common highway loads, the assessment of traffic using pavements should extend to consideration of heavy ground vehicles, such as fuel trucks, fire trucks, service vehicles, etc. These must also be controlled in relation to load limited pavements.

INTENTIONALLY LEFT BLANK

APPENDIX A – EQUIVALENT TRAFFIC

A.1 Equivalent Traffic

- A.1.1 A detailed method based on the cumulative damage factor (CDF) procedure allows the calculation of the combined effect of multiple aircraft in the traffic mix for an airport. This combined traffic is brought together into the equivalent traffic of a critical aircraft. This is necessary since the procedure used to calculate ACR allows only one aircraft at a time. By combining all of the aircraft in the traffic mix into an equivalent critical aircraft, calculation of a PCR that includes the effects of all traffic becomes possible. The methodology used to determine ACR/PCR does not consider the critical design aircraft used to determine airport dimensional requirements.
- A.1.2 The assessment of equivalent traffic, as described in this section, is needed only in the process of determining PCR using the technical method and may be disregarded when the Using Aircraft Method is employed.
- A.1.3 In order to arrive at a technically derived PCR, it is necessary to determine the maximum allowable gross weight of each aircraft in the traffic mixture, which will generate the known pavement structure. This in turn requires that the pavement cross-section and aircraft loading characteristics be examined in detail. Consequently, the information presented in this appendix appears at first to apply to pavement design rather than a PCR determination. However, with this knowledge in hand, an engineer will be able to arrive at a PCR that will have a solid technical foundation.

A.2 Equivalent Traffic Terminology

In order to determine a PCR, based on the technical evaluation method, it is necessary to define common terms used in aircraft traffic and pavement loading. The terms arrival, departure, pass, coverage, load repetition, operation, and traffic cycle are often used interchangeably by different organizations when determining the effect of aircraft traffic operating on a pavement. It is important to determine which aircraft movements need be counted when considering pavement stress and how the various movement terms apply in relation to the pavement design and evaluation process. For the purposes of this document, they are differentiated as follows:

A.2.1 Arrival (Landing) and Departure (Takeoff)

Typically, aircraft arrive at an airport with a lower amount of fuel than is used at takeoff. As a consequence, the stress loading of the wheels on the runway pavement is less when landing than at takeoff due to the lower weight of the aircraft as a result from the fuel used during flight and the lift on the wings. This is true even at the touchdown impact in that there is still lift on the wings, which alleviates the dynamic vertical force. Because of this, the FAA pavement design procedure only considers departures and ignores the arrival traffic count. However, if the aircraft do not receive additional fuel at the airport, then the landing weight will be substantially the same as the takeoff weight (discounting the changes in passenger count and cargo), and the landing operation should be counted as a takeoff for pavement stress loading cycles. In this latter scenario, there are two equal load stresses on the pavement for each traffic count (departure), rather than just one. Regardless of the method of counting load stresses, a traffic cycle is defined as one takeoff and one landing of the same aircraft, subject to a further refinement of the definition in the following text.

A.2.2 <u>Pass</u>

A pass is a one-time movement of the aircraft over the runway pavement. It could be an arrival, a departure, a taxi operation, or all three, depending on the loading magnitude and the location of the taxiways. Figure A-1 shows typical traffic patterns for runways having either parallel taxiways or central taxiways. A parallel taxiway requires that none or very little of the runway be used as part of the taxi movement. A central taxiway requires that a large portion of the runway be used during the taxi movement.

Figure A-1. Traffic Load Distribution Patterns

A.2.2.1 Parallel Taxiway Scenario

In the case of the parallel taxiway, shown as Figure A1-1a in Figure A-1, two possible loading situations can occur. Both of these situations assume that the passenger count and cargo payload are approximately the same for the entire landing and takeoff cycle:

1. If the aircraft obtains fuel at the airport, then a traffic cycle consists of only one pass since the landing stress loading is considered at a reduced level, which is a fractional equivalence. For this condition only

the takeoff pass is counted, and the ratio of passes to traffic cycles (P/TC) is 1.

- 2. If the aircraft does not obtain fuel at the airport, then both landing and takeoff passes should be counted, and a traffic cycle consists of two passes of equal load stress. In this case, the P/TC ratio is 2.
- A.2.2.2 Central Taxiway Scenario

For a central taxiway configuration, shown as Figure A1-1b in Figure A-1, there are also two possible loading situations that can occur. As was done for the parallel taxiway condition, both of these situations assume that the payload is approximately the same for the entire landing and takeoff cycle:

- 1. If the aircraft obtains fuel at the airport, then both the takeoff and taxi to takeoff passes should be counted since they result in a traffic cycle consisting of two passes at the maximum load stress. The landing pass can be ignored in this case. It is recognized that only part of the runway is used during some of these operations, but it is conservative to assume that the entire runway is covered each time a pass occurs. For this situation, the P/TC ratio is 2.
- 2. If the aircraft does not obtain fuel at the airport, then both the landing and takeoff passes should be counted, along with the taxi pass, and a traffic cycle consists of three passes at loads of equal magnitude. In this case, the P/TC ratio is 3.
- A.2.2.3 A simplified, but less conservative, approach would be to use a P/TC ratio of 1 for all situations. Since a landing and a takeoff only apply full load to perhaps the end third of the runway (opposite ends for no shift in wind direction), this less conservative approach could be used to count one pass for both landing and takeoff. However, the FAA recommends conducting airport evaluations on the conservative side, which is to assume any one of the passes covers the entire runway.
- A.2.2.4 Table A-1 summarizes the standard P/TC ratio discussion.

Taxiway Serving the Runway	P/TC Fuel Obtained at the Airport (i.e. departure gross weight more than arrival gross weight.)	P/TC No Fuel Obtained at the Airport (i.e. departure gross weight same as arrival gross weight.)	
Parallel	1	2	
Central	2	3	

Table A-1	Standard	P/TC Rat	tio Summar	y (see note)
-----------	----------	----------	------------	--------------

Note: - The standard P/TC ratios are whole numbers 1, 2, and 3. The range of values that can be entered in the software is 0.001 thru 10.0. This feature allows flexibility in those instances where a fraction of the total traffic may use different runways or other pavements. For example, a P/TC ratio of 0.5 multiplies the coverages of each aircraft by 0.5, which will increase the PCR of the pavement.

A.2.3 <u>Coverage</u>

- A.2.3.1 When an aircraft moves along a runway, it seldom travels in a perfectly straight line or over the exact same wheel path as before. It will wander on the runway with a statistically normal distribution. One coverage occurs when a unit area of the runway has been traversed by a wheel of the aircraft main gear. Due to wander, this unit area may not be covered by the wheel every time the aircraft is on the runway. The number of passes required to statistically cover the unit area one time on the pavement is expressed by the pass to coverage (P/C) ratio.
- A.2.3.2 Although the terms coverage and P/C ratio have commonly been applied to both flexible and rigid pavements, the P/C ratio has a slightly different meaning when applied to flexible pavements as opposed to rigid pavements. This is due to the manner in which flexible and rigid pavements are considered to react to various types of gear configurations. For gear configurations with wheels in tandem, such as dual tandem (2D) and triple dual tandem (3D), the ratios are different for flexible and rigid pavements, and using the same term for both types of pavements may become confusing.
- A.2.3.3 Aircraft passes can be determined (counted) by observation but coverages are used by the FAARFIELD program. The P/C ratio is necessary to convert passes to coverages for use in the program. This ratio is different for each aircraft because of the different number of wheels, main gear configurations, tire contact areas, and load on the gear. Fortunately, the P/C ratio for any aircraft is automatically determined by the FAARFIELD program and the user only need be concerned with passes.

A.2.4 <u>Operations</u>

The meaning of this term is unclear when used in pavement design or evaluation. It could mean a departure at full load or a landing at minimal load. It is preferable to use the more precise terms of departure or landing.

APPENDIX B – PCR DETERMINATION EXAMPLES

B.1 The Using Aircraft Method

- B.1.1 The Using Aircraft Method for determining PCR is presented in the following steps. This procedure can be used when there is limited knowledge of the existing traffic and runway characteristics. It is also useful when engineering analysis is neither possible nor desired. Because the rating has not been determined rigorously, airport authorities should exercise more care when applying a Using Aircraft PCR than they would with a Technical PCR.
- B.1.2 The basic procedure to arrive at a Using Aircraft PCR is:
 - 1. Determine the ACR for each aircraft in the traffic mix currently using the pavement.
 - 2. Assign the highest ACR value as the PCR.
- B.1.3 The examples in paragraphs B.2 and B.3 show the steps needed to perform the ACR calculations using ICAO-ACR, and the results. For both flexible and rigid pavement surfaces, the detailed steps are as follows:
 - 1. Assign the pavement surface type as code F or R.
 - 2. From available records, determine the strength of the pavement subgrade. If the subgrade strength is not known use Medium.
 - 3. Determine which aircraft has the highest ACR from the list of aircraft that regularly use the pavement, based on the surface type code assigned in Step 1 and the subgrade code in Step 2. ACR values may be determined from the ICAO-ACR program, or from ACR graphs found in the manufacturer's published ACAP manuals. Use the same subgrade code for each of the aircraft when determining the maximum ACR. Base ACRs on the highest operating weight of the aircraft at the airport if the data are available; otherwise, use an estimate or the published maximum allowable gross weight of the aircraft in question. Report the ACR from the aircraft with the highest ACR that regularly uses the pavement as the PCR for the pavement.
 - 4. Note: The FAA recommends that an aircraft be considered to "regularly use" an airport if they have 250 annual departures. Use engineering judgement for seasonal or occasional use aircraft
 - 5. The PCR is the highest ACR of all Using Aircraft, with appropriate tire pressure and evaluation codes added. The numerical value of the PCR may be adjusted up or down at the preference of the airport authority. Adjustments are not considered standard practice but reasons for adjustment may include local restrictions, allowances for certain aircraft, or pavement conditions.

- 6. The tire pressure code (W, X, Y, or Z) should represent the highest tire pressure of the aircraft fleet currently using the pavement. For flexible pavements, code X should be used if no higher tire pressure is evident from among the existing traffic. It is commonly understood that concrete can tolerate substantially higher tire pressures, so the rigid pavement rating should normally be given as W.
- 7. The evaluation method for the Using Aircraft Method is reported as U.

B.2 Using Aircraft Example for Flexible Pavements

- B.2.1 The following example illustrates the Using Aircraft PCR process for flexible pavements:
- B.2.2 An airport has a runway with the known traffic mix shown in Table B-1. The runway has a flexible (asphalt-surfaced) pavement with an estimated subgrade strength of CBR 9. Applying the conversion E = 1500 × CBR gives estimated E = 13,500 psi, which places it in subgrade category C.

No.	Aircraft Name	Gross Weight, lbs.	Annual Departures	Tire Pressure, psi
1	A300-B4 Std	365,747	1,500	216.1
2	A319-100 Std	141,978	1,200	172.6
4	B737-300	140,000	6,000	201.0
5	B747-400	877,000	1,000	200.0
6	B767-200 ER	396,000	2,000	190.0
7	B777-200 ER	657,000	1,000	205.0
8	DC8-63	330,000	3,000	194.0

Table B-1. Using Aircraft Traffic for a Flexible Pavement

B.2.3 Determine flexible ACR values for each airplane listed in Table B-1 using ICAO-ACR. Figure B-1 shows a sample ICAO-ACR computation for the A300-B4, the first airplane on the list. For subgrade category C, the flexible ACR number is 545.79. Table B-2 lists computed ACR values for all the operating aircraft. Note that the number of annual departures is not required to determine ACR; however, check to ensure that the number of annual operations qualifies the aircraft as being in "regular use".

No.	Aircraft Name	ACR/F/C
1	A300-B4 Std	545.79
2	A319-100 Std	326.02
4	B737-300	345.93

AC AGA-ACR-PCR-01-2024 STRENGTH RATING OF AERODROME PAVEMENTS

5	B747-400	606.91
6	B767-200 ER	507.86
7	B777-200 ER	585.58
8	DC8-63	523.07

Table B-2. Flexible ACR Values for Using Aircraft in Table B-1

Pave	ement Type Weight (hs)	Flexible Rigid 365.74	17	Selec Selec	t Airplane Group Airbus t Airplane A300-B	4 std 🗸	
P	ercent GW	0.94	0		Calculate	ACR *	
Numbe	er of Wheels	210.1	8				_
lire Pr	essure (psi) Wheel Ca	215.1 ordinates (in)		Display Sele	ct Wheels (SW)	Metric	
No	X	Y	^	Subgrade Category	Subgrade Modulus [psi]	Flexible ACR Number	ACR Thickness t
1	-19/23	0.00		D	7,251,89	737,81	35.71
2	+160.73	0.00		С	11,603.02	545.79	27.21
3	-197.23	00.00		В	17,404.53	456.68	22.04
5	197.23	0.00	~	A	29,007.55	413.29	16.82
out Deta Percer	s - Gear-2 t GW 2			Calculati	on time: 2.42 sec.		
mber o	f Wheels 2						
re Prost	are 2 (pei)						
	Wheel Coord	inates (in)					
No	х	Y					

Figure B-1. Sample ICAO-ACR Computation for A300-B4 Std (Flexible)

- 1. Since this is a flexible pavement, the pavement type code is F.
- 2. The subgrade strength category is Low, so the appropriate code is C.
- 3. The highest tire pressure of any aircraft in the traffic mix is 216.1 psi, so the tire pressure code is X.
- 4. From Table B-2, the critical aircraft is the B747-400, because it has the highest ACR of the group at the operational weights shown (607/F/B). Additionally, it has regular service.

- 5. Since there was minimal engineering analysis done in this example, and the rating was determined simply by examination of the current aircraft using the runway, the evaluation code is U.
- 6. Based on the results of the previous steps, the runway pavement should tentatively be rated as PCR 610/F/C/X/U, assuming that the pavement is performing satisfactorily under the current traffic.
- 7. If this pavement was a taxiway, the airport could rate this taxiway as the same PCR.
- B.2.4 If the pavement shows obvious signs of distress, this rating should be adjusted downward by the airport authority. If the rating is lowered, then one or more of the aircraft will have ACRs that exceed the assigned rating. This may require the airport to restrict the allowable gross weight for those aircraft or consider pavement strengthening.

B.3 Using Aircraft Example for Rigid Pavements

An airport has a runway with the known traffic mix shown in Table B-1. The runway has a rigid (concrete-surfaced) pavement. The subgrade soil has an estimated modulus E = 15,000 psi, which places it in subgrade category B.

B.3.1 Determine rigid ACR values for each airplane listed in Table B-1 using ICAO-ACR. Figure B-2 shows a sample ICAO-ACR computation for the A300-B4, the first airplane on the list. For subgrade category B, the rigid ACR number is 600.2. Table B-3 lists computed ACR values for all the operating aircraft. Note that the number of annual departures is not required to determine ACR; however, check to ensure that the number of annual operations qualifies the aircraft as being in "regular use." Also note that no information on in-situ concrete strength or thickness is needed to perform the ACR computations.

No.	Aircraft Name	ACR/R/B
1	A300-B4 Std	600.02
2	A319-100 Std	380.09
4	B737-300	403.48
5	B747-400	685.56
6	B767-200 ER	563.26
7	B777-200 ER	739.73
8	DC8-63	552.47

Table B-3. Rigid ACR Values for Using Aircraft in Table B-1

1. Since this is a rigid pavement, the pavement type code is R.
- 2. The subgrade strength category is Medium, so the appropriate code is B.
- 3. Concrete surfaces can tolerate high tire pressures, so use tire pressure code W for rigid pavement.
- 4. The B777-200 has the highest ACN of the group at the operational weights shown (740/R/B).
- 5. Since there was no engineering analysis done in this example, and the rating was determined simply by examination of the current aircraft using the runway, the evaluation code is U.
- 6. Based on these steps, the pavement should tentatively be rated as PCR 740/R/B/W/U in order to accommodate all of the current traffic.
- B.3.2 If the pavement shows obvious signs of distress, this rating should be adjusted downward by the airport authority. If the rating is lowered, then one or more of the aircraft will have ACRs that exceed the assigned rating. This may require the airport to restrict the allowable gross weight for those aircraft or consideration of pavement strengthening. The rating could also be adjusted upward, depending on the performance of the pavement under the current traffic.

Pavement Type O Fi		Flexible Image: Pigid 365,74	7	Select	Amplane Group Amplase A300-84	4 std ~	
		0.47	0		Calculate	ACR *	
		-	4				
Tire Pre	essure (psi)	216.1	1	Display Selev	z Wheels (SW)	Metric	
	Wheel Co	ordinates (in)		Sector State State	al contract line of		
No	X	Y	^	Subgrade Category	Subgrade Modulus	Rigid ACR Number	ACR Thickness t
1	-18.25	0.00		D	7,251.89	738.49	16.83
2	18.25	0.00		с	11,603.02	666.66	15.36
3	10.23	55.00		В	17,404.53	600.02	14.02
	10.2.5	33.00		A	29,007.55	514.92	12.30
ut Data Percen	Gear 2			Calculati	on time: 1.47 sec.		
nber d	Wheels 2						
Press	ure 2 (psi)						
	Wheel Coord	inates (in)					
No	×	Y					

Figure B-2. Sample ICAO-ACR Computation for A300-B4 Std (Rigid)

B.4 The Technical Evaluation Method

Use the Technical evaluation method of determining PCR when there is reliable knowledge of the existing traffic and pavement characteristics. Layer thickness and cross-sectional data, and accurate traffic counts, are needed to perform the evaluation. The following examples illustrate the use of the FAARFIELD 2.0 computer program to determine Technical PCR for flexible and rigid pavements.

B.5 Technical Evaluation for Flexible Pavements

The following list summarizes the steps for using the technical evaluation method for flexible pavements:

- 1. Determine the type of aircraft and number of annual departures of each aircraft type that the pavement will experience over its life.
- 2. Determine the subgrade elastic modulus. The modulus may be determined from test data or converted from the CBR value using $E = 1,500 \times CBR$ (for E in psi).
- 3. Determine the pavement layer characteristics. In FAARFIELD, each layer above the subgrade is characterized by its thickness and elastic modulus E. For materials meeting an FAA specification, FAARFIELD will assign the E-value automatically, or allow the user to select it from an allowable range.
- 4. Determine the P/TC ratio for the pavement using the criteria in Appendix A.
- 5. Enter all information in FAARFIELD and run the PCR evaluation.

B.6 Technical Evaluation Examples for Flexible Pavements

The following three examples demonstrate the technical evaluation method of determining a PCR for flexible pavements.

- 1. Example 1 is a pavement with excess strength relative to the using traffic volume (Total CDF < 1).
- 2. Example 2 has a thickness approximately equal to the structural requirement for the 20-year traffic (Total CDF \approx 1).
- 3. Example 3 demonstrates how to report PCR when the pavement under consideration contains significant excess structural capacity relative to the forecast traffic (Total CDF << 1).

B.6.1 <u>Flexible Pavement Example 1</u>

B.6.1.1 An airport has a flexible (asphalt-surfaced) runway pavement with a subgrade CBR of 8 and a total thickness of 32.0 inches. The structure is: 4-inch asphalt

surface layer (Item P-401), 5 inches cement-treated stabilized base (Item P-304), 6-inch standard base layer (Item P-209) and 17 inches standard subbase layer (Item P-154). The traffic mix is the same as in the Using Aircraft example (Table B-1). It is assumed for the purposes of this example that the traffic level is constant over the 20-year time period. Additional fuel is generally obtained at the airport before departure, and the runway has a parallel taxiway (P/TC ratio = 1). The pavement was designed for a life of 20 years.

B.6.1.2 Enter the data in FAARFIELD. After opening FAARFIELD, select "PCR" from the drop-down function list at the top of the screen. Select the New Flexible pavement type from the drop-down Pavement Type list. Enter or modify the structure layers directly in the Pavement Layers table, or by clicking on the image of the pavement cross section. Using the aircraft library, enter the aircraft list from Table B-3, and modify the gross weights and annual departures as necessary. The default value of P/TC is 1, and does not need to be changed. Figure B-3 shows the FAARFIELD user screen with all data entered for this example.

JOpen 300 (+) New Sector	Biere int B	Sace As Bis	ne 41 X Clear	time Stored A	arcrait Min 👲 Cra	ate 1 Edk					() r	Rest
Section												
Job Name: PCR Ever	mples	PCR	5	+	Ran	Status	Gear Struct	ute				
Section Name: Republe I	Example 1	1	nclude in sumr	nary report	Run Batch							
Payment www.												
Pavement Type: N	lew Flexible					D.M.L	0.4723844.5	rina 19	Tel I in	- BOOT	-10000	
Material		Thickness	(m) Eg	ai) (7	8R			ana ana				
P-401/P-403 HMA	Surface	4.0	200	000		000000	Cement Fresh	d Sale	1+5.0 inc		*500000 psi	
P-304 Cement Trea	ated Base	5.0	500	000		1999						
P-209 Crushed Ag	gregate	6.0	750	00:		P-209 (Crushed Appr	75-5-5	T-6.0 inc	ten PGE	=75000 ptr	
> P-154 Uncrushed /	Aggregate	17.0	400	00		1 48	LALE	LARA.	a a	A.A.S	2 age	
Subotade			120	00 B		P-1541	Uncrushed Ap	pregate L	11=17.0 in	ches 100 E	=40000 psi	
Design Life: 20 Results Calculated Life:	Total thic	Select As The	Design Layer P/ op of the subg	Delete TC Ratio: 1 rade: 32.0 r	Selected Layer				CSR-EX		=12000 ps	
Design Life: 20 Results Calculated Life:	Total thic	Select As The	Design Layer P/ top of the subg	Delete	Selected Layer		đ		(88-8.0		=12000 ps	
Design Life: 20 Results Calculated Life	Total the	Select As The	Design Layer P/ top of the subg	Delete TC Ratio: 1 prade: 32.0 v	Selected Layer	Subgra	a	Copy Stru	CSR-6.0		-1200 ps	
Design Life: 20 Results Calculated Life: Traffic: Stored Ancraft Mis: Ap	Total thic	Select As The kness to the t	Design Layer P/ top of the subg	Delete TC Ratio: 1 prade: 32.0 m	Selected Layer	- Al Arcah 0	de rom List	Capy Stru Remove Sele	CER-EX share to Cipbe cted Aircraft Fr	and on Section	<17000 ps	*
Design Life: 25 Results Calculated Life Traffic: Stored Ancraft Mis: Ap Arplane Name	Total thic pendix C PCR Exa Gross Taxi Weight (bid	Select As The kness to the t mple + Armual Departures	Design Layer P/ top of the subg Save Air Armual Growth (%)	Delete TC Ratio: 1 yrade: 12.0 m roraft Mox to 1 Total Departures	File Clea	e Al Ancraît 6	de rom List P(C Ratio	Copy Stru Remove Sele Tite Pressure (pr)	CBF-60 chare to Clipbo ched Aircraft Fr Percent GW on Gear	and DailTine Sacong (n)	<12000 ps Delete Aircraft W Tandem Tire Spacing (in)	*
Design Life: 20 Results Calculated Life Raffic: Stored Ancraft Mis: Ap Arptane Name A300-84/C4 Std Roge	Total thic pendix C PCR Ena Gross Tao Weight (Bul) 365747	Relect As The Release to the to Release to the to Annual Departures 1500	Design Layer P/ op of the subg Save Ai Arnual Growth (%) 0	Delete TC Ratio: 1 yade: 32.0 m total: Mix to 1 Total Departures 30000	File Clear COFF Contributions	r Al Arcraft 6 CDF Max for Alsplane 0	de rom List P/C Rasio 0	Copy Stu Copy Stu Remove Sole Tire Pressure (pri) 215	cter to Ciplo due to Ciplo ted Aircraft Fr Percent GW 94.005	and on Section Dual Tre Seacing (in) 365	-12000 ps Delete Aircraft W Tanden Tire Spacing (n) 55.0	*
Design Life: 20 Results Calculated Life: Italic: Stored Ancraft Mis: AP Arplane Name A300-54/C4 5td Boge A3151-00 md	pendix C PCR Eas Gross Taxi Weight [bbi] 365747 141576	Select As The kness to the b mple + Armus Departures 1500 1200	Design Layer P/ top of the subg Save Ait Annual Growth (%) 0	Delete TC Ratio: 1 prade: 32.0 m recart Mor to 1 Total Departures 50000 24000	File Clea CDF Contributions 0	All Aircraft 6 CDF Max for Airptime 0	de rom List PIC Ratio 0	Copy Sea Remove Sele Tite Pressure (pol) 216 173	ctare to Clipbo chare to Clipbo	on Section Dual Tite Seating (n) 365	+12000 ps Delete Aircraft M Tandem Tire Spacing (n.) 55.0 0.0	*
Design Life: 20 Results Calculated Life: Stored Ancraft Mis: Ap Arplane Name A300-84/C4 Stol Boge A313-100 stol E373-300	Total thic pendix C PCR Eau Gross Taxi Weight (bal) 365747 141978 140000	ngle Arnual Departures 1500 1200	Design Layer P/ top of the subg Save Ait Annual Growth (%) 0 0 0	Delete TC Ratio: 1 rade: 12.0 m rotal Departures 30000 20000	File Clea CDF Contributions 0 0	e All Aircraft () CDF Max for Airplane 0 0 1	de rom List PJC Rane 0 0 0	Copy Stru Copy Stru Remove Sele Tise Pressure Lovi 216 173 201	cereso muerto Cipbo ted Aircraft Fr Procet GW on Gear 94.005 92.605	and Our Section Dual Tre Sectory (in) 365 385 385	-12000 ps -12000 ps Delete Aircraft M Tandem Tire Spacing (in) 55.0 0.0 0.0	*
Design Life: 20 Results Calculated Life Stored Ancraft Mis: Ap Arplane Name A300-34/C4 Stol Boge A119-100 md ET37-300 ET37-300	Total thick pendix C PCR Ena Gross Tax Weight (Ibs) 365747 141576 142000 877000	Relect As The schess to the t Annual Departures 1506 1200 6000	Design Layer P/ pop of the subg Save Ait Arnual Growth (%) 0 0 0	Delete TC Ratio: 1 yrade: 12.0 m Total Departures 30000 240000 120000	File Clear CDF Contributions 0 0 0	e Al Arroratt 6 CDF Max for Algoline 0 0 0	de rom List P/C Ratio 0 0 0 0	Copy Stru Remove Sele Tire Pressure (pri) 215 173 201	cter to Clipto the Aircraft Fr Percent GW 94,005 92,005 90,005	our Section Dual Tre Sector (in) 365 365 365 305	Telete Aircraft M Delete Aircraft M Tandem Tire Spacing (n.) 55.0 0.0 55.0 55.0	*
Design Life: 20 Results Calculated Life Stored Ancraft Mis: Ap Arptane Name A300-84/C4 Std Boge A319-100 std E737-300 E747-400 Belly	Total thic pendix C PCR Eaa Gross Tao Weight (but 365747 141578 140000 077000 877000	mple + Armusi Departures 1500 1200 1000	Design Layer P/ top of the subg Save Ait Armual Growth (%) 0 0 0 0 0 0 0	Delete TC Ratio: 1 prade: 12.0 m Intraft Mix to 1 Total Departures 30000 20000 20000	File Clear Contributions 0 0 0	Al Arcest 6 CDF Max for Argune 0 0 0 0	or List PyC Rasie 0 0 0 0 0	Copy Sev Remove Sele Tite Pressure (pre) 215 173 201 200	cell-60 chare to Clipto ted Arcraft Fr Procest GW on Geler 94.005 92.605 92.605 94.605	and om Section Daal The Sectors (in) 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5	Delete Aircraft M Delete Aircraft M Tandem Tire Spacing (n) 55.0 0.0 0.0 56.0 56.0	*
Design Life 20 Results Calculated Life Stored Ancraft Mix PP Arcplane Name A300-54/C4 5td Bogie A313-100 ind B137-300 B147-400 Belly B147-400 Belly	pendix C PCR Eas Gross Taxi Weight (bit) 365747 141576 140006 877000 376000	mple + Armual Departure 1520 6000 1000 2000	Design Layer P/ top of the subg Save Ait Annual Gravith (%) 0 0 0 0 0 0 0 0 0	Delete TC Ratio: 1 prade: 32.0 m iccraft Mix to 1 Total Departures 30000 24000 20000 20000 20000 20000	File Clear CDF Contributions 0 0 0 0 0 0 0 0 0 0 0 0 0	All Arcraft fi CDF Max for Airplane 0 0 0 0 0	rom List P/C Rase 0 0 0 0 0 0 0 0 0	Copy Sto Copy Sto Remove Sole Tite Pressure (po) 216 173 201 201 200 200 190	cm-so that to Cipbo ted Aircraft Fr Percent GW on Gear 94.005 92.005 92.005 46.605 46.605	Dual Tine Section Dual Tine Sectors 36:5 30:5 44:0 44:0 45:0	+12000 ps Delete Aircraft M Tandem Tire Spacing (n.) 55.0 0.0 0.0 56.0 56.0 56.0	*
Design Life: 20 Results Calculated Life Stored Ancraft Mis: Ap Arcplane Name A300-54/C4 5td Bogle A315-100 std E1737-200 E1747-400 E1747-400 E8	Total thic pendix C PCR Eau Gross Taxi Weight (Iba) 365747 141976 14000 677000 677000 677000 677000 677000 677000	ngle Annual Departures 1500 1000 1000 1000 1000	Design Layer P/ Rop of the subg Save An Annual Growth (%) 0 0 0 0 0 0 0 0 0 0 0 0 0	Delete: TC Ratio: 1 prade: 32.0 m mode: 3	File Clea CDF Contributions 0 0 0 0 0 0 0 0	All Aircraft 0 CDF Max for Airplane 0 0 0 0 0 0 0	on List P/C Ratio 0 0 0 0 0 0 0 0 0 0 0 0 0	Copy Stru Copy Stru Remove Sele Trie Pressure Lovi 216 173 201 202 200 200 200 200 200 200 200 200	teel Aircraft Fr Percent GW 94.005 92.605 46.665 46.665 90.625 91.805	and Our Section Dual Tre Sector 365 305 440 440 450 550	-12000 ps -12000 ps Delete Aircraft M Tandem Tire Spacing (in.) 55.0 0.0 56.0 56.0 56.0 56.0 56.0 56.0	*

Figure B-3. Screen Shot of FAARFIELD in PCR Mode with Data for Flexible Example 1

lies	tats 🗂 Open tats 🕀 New Sectors 🔒 Save 700	Bine Ar Bine Al	X Cose too Ron	ed Annah Mar 🛓 Gra	en teor	(inter X to
E.	Section					x
	Job Name PCR Examples	PCR		Bure	Status Gear Structure	
	Section Name Resible Example 1	Resible Example 1 Include in summary report Run Batch Run Time: 8 seconds PCR calculation Completed Run Time: 8 seconds PCR = 681/6/C/WT		PCR Calculation Completed Run Time: 8 seconds Bridl 645 GC/017		
	Pavement Layers Pavement Type: New Flexible		+		101-00300001	
	Material	Thickness (in.)	E (pol)	CBR		
	P-304 Cement Treated Base	50	500000		-	
	P-209 Crushed Aggregate	6.0	75000		-	
	> P-154 Uncrushed Aggregate	17.0	40000			
	Subgrade		12000	B		
		Select As The Design	Layer Dele	ete Selected Layer		
	Design Ute: 20 Results		P/IC Ratio:	1		
	Calculated Life Total	thickness to the top of t	he subgrade: 💷	10 in.		

	100												E
Diper tab 🕀	New Sectors 🔒 Se	···· 8	lave As 🔒 la	Ne All X Cost	e lobi Stored /	koatlik 🛓 Gr	enter 🛨 Edit					Orep mit	eret
Section													
Job Name	PCR Examples		PCR		-	Rum	Status	Gear Struct	ute				
Section Name	Flexible Example	1		nclude in sum	mary report	Ruo Batch	PCR C Run T	alculation Co met 8 second	mpleted s				
Pavement Lay	85						PCR =	681/F/C/X/T					
Pavement Ty	pe: New Rex	ible			8								
Materia	E.		Thickness	(m) Ep	pa) C	BR .							
P-491/P	-403 HMA Surface	E.	4.0	390	2000								
P-304 Cement Treated Base		ie -	5.0	500	0000								
P-209 Crushed Aggregate		5	6.0	150	100								
> F-154 U	> F-154 Unclushed Aggrégate 17.0		17.0	400	300								
Traffic				_									
Traffic Stored Aircraft	Mic Appendix (C PCR Exan	nple 🔻	Save A	ecraft Mix to	File Clea	ir Alt Aircraft (tom List	Remove Sele	cted Aircraft Fi	ion Section	Delete Avroatt Mi	x Fi
Traffic Stored Aincraft Airplane Name	Miz: Appendix (Gro We	C PCR Exan Xsz Tani kght (Rxi)	t ple - Arnuai Departures	Save A Annual Growth (%)	vcraft Mix to Total Departures	File Clea CDF Contributions	r All Aircraft 1 CDF Max fo Airplane	from List ^r P/C Ratio	Remove Sele Tire Pressure (psi)	cted Aircraft P Percent GW on Gear	on Section Dual Tire Spacing (in.)	Delete Aircraft Mi Tandem Tire Spacing (in.)	x Fi
Traffic Stored Ancraft Airplane Name A300-84/C4 St	Miz: Appendix (Gro Me d Bogie 365	C PCR Exan tes Tani ight (boi) 747	nple + Armuai Departures 1500	Save A Annual Growth (%) 0	Foraft Mix to Total Departures 30000	File Clea CDF Contributions 0.01	r Al: Aircraft 1 CDF Max to Airplane 0.04	from List P/C Ratio 1.22	Remove Sele Tire Pressure (psi) 216	cted Aircraft Fi Percent GW on Gear 94.00%	Dual Tire Spacing (in.) 36.5	Delete Arcraft Mi Tandem Tire Spacing (n.) 55.0	хЯ
Stored Ancraft Airplane Name A300-84/C4 Sh A319-100 std	Max Appendix (e Gro We d Bogie 365 141	C PCR Exan Issi Tani Hght (Ibs) 747 978	nple (* Armuai Departures 1500 1200	Save A Annual Growth (%) 0 0	ecraft Mix to Total Departures 30000 24000	File Clea CDF Contributions 0.01 0	r All Aircraft 1 CDF Mas fo Airplane 0.04 0	from List F P/C Ratio 1.22 1.23	Remove Sele Tire Pressure (psi) 256 173	cted Arcoaft F Percent GW on Gear 94.00% 92.60%	Dual Tire Specing (in.) 36.5 36.5	Delete Aircraft Mi Tandem Tine Spacing (in.) 55.0 0.0	x F
Traffic Stored Aincraft Aisplane Name A300-84/C4 So A319-150 std 8737-300	Max Appendix (e Geo d Bogie 365 141 140	C PCR Exan Issa Taxi Hght (Ibs) 1747 1976 1000	nple (* Annual Departures 1500 1200 6000	Save A Annual Growth (%) 0 0 0	accraft Mia to Total Departures 30000 24000 120000	File Clea CDF Contributions 0.01 0 0	r AR Aircraft CDF Mas fo Airplane 0.04 0 0	from List P/C Ratio 1.22 1.23 1.3	Remove Sete Tire Pressure (psi) 216 173 201	cted Arcoaft Fr Percent GW on Gear 94,00% 92,60% 90,88%	Dual Tire Specing (in.) 36.5 38.5 30.5	Delete Arcraft Mi Tandem Tine Spacing (in.) 55.0 0.0 0.0	хĤ
Tinfic Stored Ancraft Airplane Name A300-84/C4 50 A319-100 std 8717-300 8747-400	Max Appendix (Gitt d Bogie 365 141 140 877	C PCR Exan Iss: Taxi Hght (Ibs) 1747 1975 1000 1000	nple (* Annual Departures 1500 1200 6000 1000	Save A Annual Growth (%) 0 0 0 0 0	Perraft Mia to Total Departures 30000 24000 120000 25000	File Clear CDF Contributions 0.01 0 0 0.05	r All Aircraft 1 CDF Mas fo Airplane 0.04 0 0 0.029	tom List P/C Ratio 1.22 1.23 1.3 1.16	Remove Sele Tire Pressure (pol) 215 173 201 200	cted Arcoaft P Percent GW on Geor 94.00% 92.50% 90.85% 45.56%	Dual Tire Specing (in.) 36.5 36.5 30.5 44.0	Delete Arout We Tandem Tine Spacing (in.) 55.0 0.0 0.0 0.0 55.0 0.0 55.0	хЯ
Tristic Stored Akcraft Airplane Name A300-54/C4 50 A319-100 std 8737-300 8747-400 8747-400 belly	Misc Appendix (F Get d Bogie 365 141 140 877 077	C PCR Evan tes Taxi ight (Bol) i747 1978 1900 1900 1900	Annual Departures 1500 1200 5000 1000 1000	Save A Annual Growth (%) 0 0 0 0 0 0	acraft Mis to Total Departures 30000 24000 120000 25000 25000 25000	File Clear CDF Contributions 0.07 0.08 0.08 0.08	r All Aircraft 1 CDF Mas fo Airplane 0.04 0 0.09 0.05	tom List P/C Ratio 1.22 1.23 1.3 1.16 1.17	Remove Sele Tine Pressure (pni) 216 173 201 200 200 200	cted Arrowth P Percent GW on Gear 94.00% 92.50% 90.88% 45.56% 45.56%	Dual Tire Specing (in.) 36.5 36.5 30.5 44.0 44.0	Delete Arout Mi Tardem Tire Spacing (in) 55.0 0.0 0.0 58.0 58.0 58.0	x F
Highlic Stored Ancraft Arglane Name A300-54/C4 50 A319-100-ste 8737-300 8747-400 8747-400 8747-200 E8	Max Appendix (C PCR Evan ses Tani ight (bo) i747 1978 1900 1900 1900 1900 1900	Arrtual Departures 1500 5000 1000 5000 1000 2000	Save A Annual Growth (%) 0 0 0 0 0 0 0 0 0	ecraft Mis to Total Departures 30000 24000 120000 25000 25000 45000	File Clear CDF Contributions 0.07 0 0 0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e All Aircraft I CDF Mee fo Airplane 0.04 0 0.09 0.05 0.05 0	from List P/C Ratio 1.22 1.23 1.3 1.36 1.17 1.16	Remove Sele Tire Pressure (pni) 215 173 201 200 200 190	cted Arcoaft F Percent GW on Gear 94.00% 92.60% 90.88% 45.66% 45.66% 90.82%	ont Section Dual Tire Specing (in.) 36.5 36.5 46.0 44.0 45.0	Detete Arout Mi Spacing (n.) 55.0 0.0 56.0 56.0 56.0 56.0	ix Fr
Tratic Stored Aincraft Airglane Name A300-84/C4 St A319-100-std 8737-300 8747-400 8747-400 Belly 8747-400 Belly 8747-400 Belly 8747-200 ER	Muz Appendix (C PCR Exar set Tati ight (bs) 747 978 000 7000 000 000 000 000	Annual Departures 1500 1200 5000 1000 2000 1000 2000	Save A Annual Growth (%) 0 0 0 0 0 0 0 0 0	ecraft Mix to Total Departures 30000 24000 120000 25000 45000 25000 25000	File Clear CDF Contributions 0.07 0.08 0.08 0.08 0.091	ar All Aircsaft CDF May fo Airplane 0.04 0 0.09 0.05 0 0.05	Form List P/C Ration 1.22 1.23 1.3 1.16 1.17 1.16 1.28	Remove Sele Tine Pressure (psi) 215 173 201 200 200 190 205	cted Arrowth P Percent GW on Gear 94.005 92.605 90.825 45.605 45.605 90.825 90.825 90.825 90.825 90.825 90.825 90.825 91.805	om Section Dual Tire Specing (in.) 36.5 36.5 44.0 44.0 45.0 55.0	Delete Arout Mi Tandem Tine Spacing (in.) 55.0 0.0 0.0 56.0 56.0 56.0 56.0 56.0 5	x F
Franke Stoned Ancraft Anglane Name A300-54/C4 50 A319-100-58 B737-300 B747-400 B747-400 B9 B767-200 ER B777-200 ER DCB-63/73	Mis: Appendix (e Get d Bogie 365 141 140 877 877 877 877 877 359 657 330	C PCR Exar les Taal ight (Bol) 747 1978 1000 1000 1000 1000 1000 1000	nple (*) Annual Departures 1500 1200 2000 1000 2000 1000 2000	Sane A Annual Growth (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	acraft Min to Total Departures 30000 24000 120000 25000 25000 45000 56000	File Clear CDF Contributions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r All Aircraft 1 CDF Max fo Airplane 0.04 0 0 0.05 0.05	tom List P/C Ratio 122 123 13 136 1.16 1.17 1.16 1.28 1.27	Remove Sele Tine Pressure (psi) 215 173 201 200 200 190 205 196	cted Arcoaft F Percent GW on Geor 94.005 90.855 45.555 90.825 91.805 91.805 96.125	Dual Tire Specing (in.) 36.5 36.5 36.5 36.5 44.0 44.0 45.0 55.0 32.0	Delete Arout Mi Iandem Tire Spacing (in) 55.0 0.0 0.0 58.0 58.0 58.0 56.0 57.0 55.0	×F

Figure B-5. FAARFIELD Traffic Table – Flexible Example 1

		exterior 🗃 ta	10.100 Q 5	ele Block (Comiter St	and Arcall Ma	tom tom					One m
Sec	horr											
Job	Name.	PCR Exemples		POR.		- R.	Status	Gear Structur	ŧ			
Sec	tor Name	Flexibile Transple	et)(🖉 Nitude	n wimilarly rep	of 🗍 Rut Br	tuty PCR (Run 1 PCR (Calculation Com lime: 8 seconds + 681/5/12/8/1	plated			
1	wenent Typ	el New Res	et la		+							
F	Material F-423/P-4	ICE HMA Surface	_	Thickness (m.)	E (pre)	CM.						
	P-384 Car	ment Treated Ba	ii)	52	40000E		1					
16-	P-209 Cn	uhed Aggregate		60	10000	_						
+	Subgrack	ormanin Aggrege	19	17.0	12000	8						
Rock	- 1)+}	Dear All Ainmet	frem(List)	famore betw	ited Anoralt fo	un Seption	Delete Ansraft Mi	a File				
	CDF Contribute	CDF Max h	" IVC Rate	Ten Presson Seni)	Persent GW Im Gear	Dual Tire Specing (m.)	Tandam Tire Spacing (NJ	Tee Contact Woth Sec.	Tire Contact Jumpth SnJ	Tre Callor Area (n.*.)	ACR Thick (m) ICI	ACIL//K/C
1100	0.01	0.04	1.22	216	94.00%	\$63	35.0	14.8	.23.7	3763	372	545.9
10.66	8	0	1.23	175	\$2.60%	365	8.0	18.8	23.7	2762	22.0	326.1
	1	0	13	201	90.86%	30.5	8.0	112	18.0	158.2	32.5	345.6
aree		0.08	1.16	200	46,88%	44.0	58,0	143	32.8	255.8	28.6	607.5
-	0.06	0.08	1.11	200	40.00%	44.0	58.0	14.5	32.8	255.8	0.0	0
	0		1.56	190	90.82%	45.0	56.0	13.7	12.0	136.6	36.1	507,9
	0 DB- 0 U	0			and the second s	344.0	200	14.0	324	345.2	18.1	A DECK
	0.06 U 0.07	0.01	1,28	205	91,00%			110	112.1	1000		10000
	0.06 0 0 0.01 0.05	0 0.01 0.09	1,38 1,37	205 196	95.12%	\$2.0	\$5.0	12.7	20.5	1983	26.7	524.1

Figure B-6. FAARFIELD Traffic Table – Flexible Example 1 (ACR Values)

- B.6.1.3 Click "Run." FAARFIELD will perform the PCR computations automatically. When the calculation is complete, the computed PCR value will appear in the "Status" screen at upper right (Figure B-4). For this example, the computed PCR is 681/F/C/X/T. Note that FAARFIELD automatically identifies the correct subgrade category based on the entered subgrade properties. FAARFIELD selects X as the default tire pressure category, but the user may choose to report a different category based on information about the surface asphalt mixture.
- B.6.1.4 The Traffic table provides additional information about the PCR calculation (Figure B-5). Columns "CDF Contributions" and "CDF Max for Airplane" show the CDF contribution of each aircraft in the mix at the critical offset for the traffic mix, and for the individual aircraft, respectively. The total CDF for this example is 0.180. The total CDF for this example is less than 1.0, indicating that the flexible pavement has excess structural capacity for the using traffic. Note that the CDF values may differ from the values computed for the same traffic mix in Design mode. This is due to the different gear characteristics (percent of gross weight on the main gear and tire pressure) used for PCR calculations and design calculations.
- B.6.1.5 Scrolling to the right of the FAARFIELD traffic table shows the computed ACR values of the Using Aircraft at their operating weights (Figure B-6). ACR thicknesses and flexible ACR values are displayed for each aircraft for the subgrade category of the pavement being evaluated. In this example, all ACRs are less than the computed PCR. Therefore, all aircraft can operate on the pavement without restriction.

- B.6.1.6 From the explorer bar, select "PCR Graph." FAARFIELD displays a bar graph showing visually the ACR values of the six most demanding aircraft in the list. The horizontal black bar represents the calculated PCR value. This graph shows that all ACR values are less than the PCR, hence all aircraft can operate with no restrictions. The PCR value appears in the table in the column associated with the critical aircraft. In this example, the critical aircraft for PCR calculations is the B747-400, which is also the aircraft with the highest ACR at operating weight.
- B.6.1.7 From the explorer bar, select "PCR Report." FAARFIELD displays details of the PCR computation, in the form of three tables:
 - 1. Results Table 1 reports input traffic data for all using aircraft. Percent gross weight on the main gear and tire pressure values are those applicable to ACR calculations, and may differ from the values used for design.
 - 2. Results Table 2 gives information on the critical aircraft: critical aircraft equivalent annual departures (which should be equal to or greater than the actual annual departures for that aircraft in Results Table 1); the computed MAGW of the critical aircraft (which will be greater than the operating gross weight if ACR < PCR); the ACR thickness for the critical aircraft at the MAGW, and the PCR, which is defined as the ACR of the critical aircraft at the MAGW.
 - 3. Results Table 3 lists calculated ACR information for the Using Aircraft.

Clicking "Save as PDF" at the top of the screen saves a copy of the generated report (Figure B-8).

Figure B-7. FAARFIELD PCR Graph – Flexible Example 1

Figure B-8a. FAARFIELD PCR Report - Flexible Example 1

Federal Aviation Administration FAARFIELD 2.0 PCR Report
FAARFIELD 2.0.0.f Beta 07/13/2020
Working directory is C:\Users\David Brill\Documents\Wy FAARFIELD
Job Name: PCR Examples
Section: Flexible Example 1
This file name = PCR Results for Flexible 2020-07-15 11:34:46.txt
Evaluation pavement type is flexible and design program is FAARFIELD.
Section name: Flexible Example 1 in job file: C:\Users\David Brill\Documents\My FAARFIELD\PCR Examples.JOB.xml
Units = US Customary
Analysis Type: New Flexible
Subgrade Modulus =12000psi (Subgrade Category is C(11k))
Evaluation Pavement Thickness = 32.0 in.
Pass to Traffic Cycle (PtoTC) Ratio = 1.00
Maximum number of wheels per gear = 6
CDF = 0.180
At least one aircraft has 4 or more wheels per gear.

Results Table 1. Input Traffic Data

No.	Aircraft Name	Gross Weight Ibs	Percent Gross Weight	Tire Pressure psi	Annual Departure	20 Years Coverage
1	A300-B4/C4 Std Bogie	365747	94.00	216.1	1500	24508
2	A319-100 std	141978	92.60	173.0	1200	19573
3	8737-300	140000	90.86	201.0	6000	92631
4	8747-400	877000	46.66	200.0	1000	17187
5	8747-400 Belly	877000	46.66	200.0	1000	17156
6	8767-200 ER	396000	90.82	190.0	2000	34480
7	B777-200 ER	657000	91.80	205.0	1000	15661
8	DC8-63/73	330000	96.12	196.0	3000	47172

Figure B-8b. FAARFIELD PCR Report – Flexible Example 1 (continued)

|--|

Results Table 2. ACR Value

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft	ACR Thick at max. MGW (in.)	PCR//F/C
1	B747-400	1790	947124	30.06	681.1

Results Table 3. Flexible ACR at Indicated Gross Weight and Strength

No.	Aircraft Name	Gross Weight Ibs	Percent Gross Weight on Main Gear	Tire Pressure psi	ACR Thick (in.)(C)	ACR//F/C
1	A300-B4/C4 Std Bogie	365747	94.00	216.1	27.2	545.9
2	A319-100 std	141978	92.60	173.0	22	326.1
3	B737-300	140000	90.86	201.0	22.5	345.6
4	B747-400	877000	93.32	200.0	28.6	607.5
6	B767-200 ER	396000	90.82	190.0	26.3	507.9
7	B777-200 ER	657000	91.80	205.0	28.1	585.6
8	DC8-63/73	330000	96.12	196.0	26.7	524.1

B.6.2 <u>Flexible Pavement Example 2</u>

B.6.2.1 The second example has the same traffic and subgrade CBR as Example 1, but with a reduced cross section that results in a total CDF approximately equal to 1. The structure is as shown in Figure B-9, and the other input data are as shown in Figure B-3. As in Flexible Example 1, the airport has a parallel taxiway configuration (Figure A1-1a) such that the P/TC ratio = 1. After running PCR, the PCR Graph and PCR Report are shown in Figures B-10 and B-11, respectively. For this example, the computed PCR is 617/F/C/X/T and the total CDF = 0.990. Figure B-10 shows that all operating aircraft have ACR < PCR. Hence, no weight restrictions are required on the operating fleet, which is consistent with CDF <

1.0. In general, CDF > 1.0 indicates that at least one aircraft in the fleet will have ACR > PCR.

Figure B-9. Flexible Pavement Structure for Flexible Example 2

Figure B-10. PCR Graph for Flexible Example 2

Figure B-11. FAARFIELD PCR Report - Flexible Example 2

Federal Aviation Administration FAARFIELD 2.0 PCR Report FAARFIELD 2.0.0.f Beta 07/13/2020 Working directory is C:\Users\David Brill\Documents\My FAARFIELD						
Job Name: PCR Examples						
Section: Flexible Example 2						
This file name = PCR Results for Flexible 2020-07-15 12:42:08.txt						
Evaluation pavement type is flexible and design program is FAARFIELD.						
Section name: Flexible Example 2 in job file: C:\Users\David Brill\Documents\Wy FAARFIELD\PCR Examples.JOB.xml						
Units = US Customary						
Analysis Type: New Flexible						
Subgrade Modulus =12000psi (Subgrade Category is C(11k))						
Evaluation Pavement Thickness = 29.7 in.						
Pass to Traffic Cycle (PtoTC) Ratio = 1.00						
Maximum number of wheels per gear = 6						
CDF = 0.990						
At least one aircraft has 4 or more wheels per gear.						

Results Table	1. Input	Traffic Data
----------------------	----------	--------------

No.	Aircraft Name	Gross Weight Ibs	Percent Gross Weight	Tire Pressure psi	Annual Departure	20 Years Coverage
4	A300-B4/C4 Std Bogie	365747	94.00	216.1	1500	24126
2	A319-100 std	141978	92.60	173.0	1200	19266
3	B737-300	140000	90.86	201.0	6000	90850
4	B747-400	877000	46.66	200.0	1000	16970
5	8747-400 Belly	877000	46.66	200.0	1000	16938
6	8767-200 ER	396000	90.82	190.0	2000	33248
7	6777-200 ER	657000	91.80	205.0	1000	14912
8	DC8-63/73	330000	96.12	196.0	3000	46328

Figure B-11. FAARFIELD PCR Report – Flexible Example 2 (continued)

No.	Aircraft Name	Gross Weight Ibs	Percent Gross Weight	Tire Pressure psi	Annual Departure	20 Years Coverage
-----	---------------	---------------------	----------------------	----------------------	------------------	-------------------

Results Tuble L. Ach fulue	Results	Table	2.	ACR	Value
----------------------------	---------	-------	----	-----	-------

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft	ACR Thick at max. MGW (in.)	PCR//F/C
1	B747-400	1875	886680	28.76	617.4

Results Table 3. Flexible ACR at Indicated Gross Weight and Strength

No.	Aircraft Name	Gross Weight Ibs	Percent Gross Weight on Main Gear	Tire Pressure psi	ACR Thick (in.)(C)	ACR//F/C
1	A300-B4/C4 Std Bogie	365747	94.00	216.1	27.2	545.9
z	A319-100 std	141978	92.60	173.0	22	326.1
3	B737-300	140000	90.86	201.0	22.5	345.6
4	B747-400	877000	93.32	200.0	28.6	607.5
6	8767-200 ER	396000	90.82	190.0	26.3	507.9
7	8777-200 ER	657000	91.80	205.0	28.1	585.6
8	DC8-63/73	330000	96.12	196.0	26.7	524.1

B.6.2.2 Assuming that the airport has a central taxiway configuration rather than parallel effectively doubles the number of coverages on the runway and reduces the PCR. In Figure B-12, the only change is that the P/TC ratio has been increased from 1 to 2, reflecting the central taxiway configuration in Fig. A1-1b. With this change, the computed PCR is now 589/F/C/X/T, and the total CDF is 1.52. Because the total CDF > 1.0, we expect that at least one of the listed aircraft has ACR > PCR. Figure B-13 shows that this is in fact the case, that the ACR of the B747-400 exceeds the PCR by approximately 3%. Following ICAO guidance that allows occasional overload operations by aircraft with ACR up to 10% above the reported PCR, operations of the B747-400 would still be allowed on this pavement, but the number of such operations at full weight would be limited to 5% of total operations on the taxiway. In addition, the taxiway pavement should be monitored for damage after each overload operation.

Figure B-12. FAARFIELD PCR Output – Flexible Example 2 (with P/TC = 2)

	the Constant G	Sem for Other	e All 🗙 Cose I	uti - Stored Airun	aft Min 👲 Great	* 1 EEK						0)Help 🖍
Section Section Report	t COF Graph PCR	Report PCR	Graph Form !	5010									
Job Name: PCR E	amples	PCR		*	Run	Status Gen	Structure						
Section Name: Fields	e Example 2	2 In	clude in summ	ary report	Run Satuh	PCR Calcula Bun Time: 1 PCR = 589/	etion Compl 13 seconds /F/C/X/T	leted.					
Pavement Type:	New Resible												
Maturial		Thickness 5	n) Eam	0 CBR									
P-401/P-403 HM	A Surface	4.0	2500	00	i.	-		_					
P-304 Cement 3	eated Base	5.0	5000	00									
P-205 Crushed A	ggregate.	6.0	2500	0									
> P-154 Uncrushe	Aggregate	14.7	4000	9 -									
Subgrade			1200	0 8									
Design Life: 20 Results	Total Print	inges to the tr	P/Ti	C Ratio: 2									
Design Life: 20 Results Calculated Life:	Sotal thic	kness to the to	P/Ti	C Ratio: 2									
Design Life: 20 Results Calculated Life: Inaffic Stored Aircraft Max 3	Sotal thick	kness to the to mple -	P/Ti op of the subgo	C Ratio: 2 auter 29.7 m.	Cierri	40 Aircraft Irom	Griff	Remove Selecter	d Aircraft From	Section Del	ete Aircraft Mis Fil		2
Design LHe: 20 Results Calculated LHe Institic Stored Aircraft Misc 2 Austane Name	Sotal thic Appendix C PCR Exam Gross Tak Weight Obs)	mple -	PyTr p of the subgr Save Arr Armual Growth (%)	C Ratio: 2 ade: 29.7 m. raft Mix to File Total Departures	Clear A	40 Aircraft from CDF Max for Airplace	Gitt P/C Ratio	Remove Selecter Tre Pressure Qm0	d Aircraft From Percent GW ps Gear	Section Dela Dual Trie Spoong (in)	ete Aircraft Mix Fili Tandem Tire Specing (m)	e Tire Contact, Width (Iin.)	Tire Co Length
Design Life: 20 Results Calculated Life: Institic Stored Aircraft Mis: 2 Augtane Name A100-84/C4 Std Bogle	Total thick oppendix C PCR Equil Gross Taul Weight (Day) 365747	kness to the to mple - Annual Departures 1500	P/T p of the subgr Save Arr Growth (%) 0	C Ratio: 2 aute: 29.7 m. craft Mix to File Departures 10000	Ctear / CDF Combutions 0.05	40 Aircraft from CDF Max for Airplace 0.43	Unit P/C Ratio 1.24	Remove Selecter Tre Pressure 0x0 216	d Aircraft From Percent GW Ion Gear 94.00%	Deat Trie Spoong (in) 36.3	ete Aircraft Mix Fili Tandem Tiro Specing (m.) 55.0	e Tire Contact Widts (in.) 14.1	Tire Co Length 224
Denige Life: 20 Results Calculated Life: Stored Ancraft Max: 2 Anglane Name A100-B4/C4 Stot Boge A219-100 cd	Sotal thick appendix C PCR Equi Gross Tael Weight Obo 360/1471	kness to the to mple - Annual Departures 1500 1200	P/T p of the subgr Seve Am Annual Growth (%) 0	C Ratio: 2 ade: 29.7 m. oraft Mis to File Total Departmen 30000 24000	Clear A CDF Correlations 0.04 0	W Aircraft from CDF Max for Angulate D	Unt P/C Ratio 1.24 1.25	Remove Selecte Tre Presure Qm0 216 173	d Aircraft From Percent GAV on Gear 94.00% 92.60%	lection Del Dual Tire Spoong (in) 563 263	ete Aircraft Mis Fili Tandom Tire Specing (m) 558 0.0	e Tire Contact Wides (in.) 14.1 14.1	Tire Co Length 22.6
Design Life: 20 Resids Calculated Life: Stored Annost! Max: 2 Arcplane Name Anton-PACE Stot Bogle A319-100 col 8757-300	Sotal thick appendix C PCR Equi Gross Taxi Weight Obio 365747 141978 140005	mple - Annual Departures 1500 6000	P/Ti p of the subgr Seve Arr Annual Growth (%) 0 0 0	C Ratio: 2 ante: 29.7 m. Total Departures 10000 120000	Clear / CDF Correlations 0.09 0	40 Aircraft Imm. CDF Max for Airplase 0 0 0	Greet P/C Ratios 1.24 1.25 1.32	Remove Selecter Tre Pressure (pm) 216 173 201	d Aircraft From Percent GW ps. Gear 94.00% 92.60% 90.86%	lection Del Dual Tile Spoong Un) 363 365 303	ete Aircraft Mix Fili Tandem Tire Specing (m) 55.0 0.0 0.0	e Tire Contact Wides (in.) 14.1 14.1 14.1 11.2	Tire Co Length 22.6 16.0
Design Life: 20 Results: Calculated Life: Stored Arcoaft Mar: 2 Aeptane Name A100-54545 50 Bogle A119-100 rol 8787-400	Setal thick appendix C PCR base Giross Taxii Weight Obo 365747 141978 141978 14200 107000	Annual Departures 1500 6000 1000	P/Ti p of the subgro Seve Arr Annual Growth (%) 0 0 0 0	C Ratio: 2 adde 29.7 m. Total Departures 30000 120000 20000	Clear / CDF Combutions 0,04 0,042	40 Aircraft from CDF Max for Angilate 0.43 0 0. 0.042	0nt P/C Rator 1.24 1.25 1.32 1.18	Remove Selecter Tre Pressure Qie0 216 173 201 201 201	d Aircraft From Percent GW on Gear 94.00% 92.60% 93.08% 46.65%	Section Del Dual Trie Spoong (in) 563 365 305 440	ete Aircraft Mis Fil Tandem Tire Specing (m) 95/0 0.0 8.0 58.0	r Tire Contact. Width (in.) 14.1 14.1 11.2 14.3	Tire Co Length 22.6 16.0 22.8
Design Life: 20 Results: Calculated Life: Stored Ancatt Mar: 2 Arctane Name A100-B4/C4 Stol Bogte A190-B4/C4 Stol Bogte S157-300 S157-400 Belly	Total thick Appendix C.PCR, Ease Gross Tabl Weight Obo) 360747 141978 141978 142000 877000 877000	Annual Departures 1500 1200 6000 1000	P/Ti p of the subgr Seve Arr Commit (%) 0 0 0 0 0	C Ratio: 2 adde 29.7 m. 20.7	Clear A CDF Combusies 0.05 0 0 0.042 0 0	All Aircraft from CDF Max for Angilene 0.43 0 0 0 0.42 0.42 0.42 0.42	Unt P/C Ratur 1.24 1.32 1.18 1.18	Remove Selecter Trac Pressure (amo) 216 173 201 200 200 200	F Aircraft From Percent GW on Gear 94.00% 92.60% 93.66%	lection Dele Dual Tite Spoong (in) 56.5 36.5 30.5 44.0 44.0	ete Airozaft Mis Fili Tardem Tire Specing (m.) 55/8 0.0 53.0 58.0 58.0 59.0	r Tire Contlact Width (in.) 14.1 14.3 14.3 14.3	Tire Co Length 22.6 22.6 16.0 22.8 22.8 22.8
Design Life: 20 Results Calculated Life: Stored Annost Max: 4 Anghane Name A100-54/CL4 Stol Biogle A119-100 rol 8747-400 8747-400 Bioly 8767-300 Els	Socal third Appendix C PCR East Gross Tail Weight Obo 3565747 141978 14000 877000 376000 376000	Annual Departures 1500 1500 1500 1500 1500	P/Tr p of the subgroup of the	C Ratio: 2 ade: 29.7 m. Total Departures 30000 20000 20000 20000 20000 20000	Clear J CDF Combusies 0.04 0 0 0.042 0 0.001	U Ancret hom CDF Max for Analysis 0.45 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Unt P/C Ratio 1.24 1.25 1.18 1.18 1.18 1.21	Remove Selecter 0m0 216 173 201 200 200 190 190	d Aircraft From Percent GW 95.00% 92.60% 93.00% 93.00% 94.00% 94.00% 95.00%	Destinant Dest Dual Tire Spoong (m) 98.5 30.5 30.5 44.0 45.0 77.0	ete Arccaft Mix Fib Specing (m) S5/8 0.0 0.0 0.0 58/0 58/0 58/0 58/0 58/0	r Tire Contact Wides (in) 14.1 14.3 14.3 14.3 14.3 14.3 13.7	Tire Co Length 22.6 22.8 22.8 22.8 22.8 22.8
Design Life: 20 Results: Calculated Life: Stored Ancraft Min: 2 Anphane Name A100-B4/C4 Stof Bogle A119-100 rol 8/37-300 6/37-400 6/37-400 8/37-30	Tetal thick appendix C PCR base Gross Tael Weight Obo 365/71 141978 140905 177006 877006 877006 877006 376000 537000	Resis to the to mple + Annual Departures 1500 1500 1500 1500 2000 2000 2000 2000	P/Tr p of the subgro Save Arr Annual Growth (%) 0 0 0 0 0 0 0 0	C Ratio: 2 ade: 29.7 m. Total Department 10000 24600 120000 40000 40000 20000	Clear A CD# Combustiens 0.04 0 0.042 0 0.042 0 0.001 0.05 0.001	U Anzah hun. CDF Max for 0.45 0 0.42 0.42 0.62 0.62 0.62 0.62	Unt P/C Rates 1.24 1.25 1.32 1.16 1.2 1.34 1.3	Remove Selecte Tre Pressure (pro). 216 173 200 200 200 200 200 200 200 200 200 20	4 Arcoaft From Percent GW 94.00% 92.60% 46.66% 46.66% 91.80% 91.80%	lection Deal Tile Specing (in) 16,5 26,5 30,5 44,0 44,0 55,0 55,0 55,0	ete Aircraft Mis Fib Tandem Tire Secting (m.) 550 0.0 580 580 580 560 560 560 560 560 560 560 560 560 56	e Tire Contact Wides in) 14.1 14.1 14.3 14.3 14.3 13.7 14.0 13.7 14.0 13.7	Tire Co Length 22.6 22.8 22.8 22.8 22.8 22.8 22.8 22.4 22.0 22.4 22.4 22.4

Figure B-13. FAARFIELD PCR Graph – Flexible Example 2 (with P/TC = 2)

B.7 Technical Evaluation for Rigid Pavements

The following list summarizes the steps for using the technical evaluation method for rigid pavements:

- 1. Determine the type of aircraft and number of annual departures of each aircraft type that the pavement will experience over its life.
- Determine the subgrade elastic modulus. The modulus may be determined from test data or converted from the CBR value using E = 1,500 × CBR (for E in psi).
- 3. Determine the concrete thickness and flexural strength. The flexural strength is an estimate of the concrete strength that would be obtained from a four-point beam break test following ASTM C 78. If current beam break test data are unavailable, the engineer should estimate the insitu flexural strength from design records, correlations of flexural strength to split cylinder tensile strength, or correlations of flexural strength to in-situ concrete modulus E (e.g., from HWD tests).
- 4. Determine the other pavement layer characteristics. In FAARFIELD, each layer above the subgrade and below the concrete is characterized by its thickness and elastic modulus E. For materials meeting an FAA specification, FAARFIELD will assign the E-value automatically, or allow the user to select it from an allowable range.
- 5. Determine the P/TC ratio for the pavement using the criteria in Appendix A.
- 6. Enter all information in FAARFIELD and run the PCR evaluation.

B.8 Technical Evaluation Examples for Rigid Pavements

The following three examples demonstrate the technical evaluation method of determining a PCR for flexible pavements.

- Example 1 is under designed relative to the using traffic volume (Total CDF > 1). The computed PCR requires operating weight restrictions on the using traffic.
- 2. Example 2 has a thickness approximately equal to the structural requirement for the 20-year traffic (Total CDF \approx 1).
- 3. Example 3 demonstrates how to report PCR when an existing pavement has a thin asphalt overlay, but is structurally a rigid pavement.

B.8.1 <u>Rigid Pavement Example 1.</u>

B.8.1.1 An airport has a rigid (concrete-surfaced) runway pavement. The in-situ flexural strength is 650 psi. The structure is: 16 inches concrete surface layer (Item P-501), 8 inches asphalt stabilized base (Item P-403), and 6 inches standard base layer (Item P-209) placed directly on a prepared subgrade. From HWD tests on the runway, the subgrade modulus is estimated at E = 7,800 psi. The traffic mix

is the same as in the Using Aircraft example (Table B-1). It is assumed for the purposes of this example that the traffic level is constant over the 20-year time period. Additional fuel is generally obtained at the airport before departure, and the runway has a parallel taxiway (P/TC ratio = 1). The pavement was designed for a life of 20 years.

- B.8.1.2 Enter the data in FAARFIELD. After opening FAARFIELD, select "PCR" from the drop-down function list at the top of the screen. Select the New Rigid pavement type from the drop-down Pavement Type list. Enter or modify the structure layers directly in the Pavement Layers table, or by clicking on the image of the pavement cross section. Using the aircraft library, enter the aircraft list from Table B-1, and modify the gross weights and annual departures as necessary. The default value of P/TC is 1 and does not need to be changed. Figure B-17 shows the FAARFIELD user screen with all data entered for this example.
- B.8.1.3 Click "Run." FAARFIELD will perform the PCR computations automatically. When the calculation is complete, the computed PCR value will appear in the "Status" screen at upper right (Figure B-18). For this example, the computed PCR is 917/R/D/W/T. Note that FAARFIELD automatically identifies the correct subgrade category based on the entered subgrade properties. FAARFIELD selects 'W' as the default tire pressure category for rigid pavements, because it is assumed that concrete surfaces will tolerate high tire pressures.
- B.8.1.4 The Traffic table provides additional information about the PCR calculation (Figure B-19). Columns "CDF Contributions" and "CDF Max for Airplane" show the CDF contribution of each aircraft in the mix at the critical offset for the traffic mix, and for the individual aircraft, respectively. The total CDF for this example is 4.84. Total CDF for this example is greater than 1.0, indicating that the rigid pavement has insufficient structural capacity for the using traffic. Note that the CDF values may differ from the values computed for the same traffic mix in Design mode. This is due to the different gear characteristics (percent of gross weight on the main gear and tire pressure) used for PCR calculations and design calculations.
- B.8.1.5 Scrolling to the right of the FAARFIELD traffic table shows the computed ACR values of the Using Aircraft at their operating weights (Figure B-20). ACR thicknesses and rigid ACR values are displayed for each aircraft for the subgrade category of the pavement being evaluated. In this example, the computed ACR for the B777-200 ER (ACR 1040/R/D) exceeds the computed PCR. If the airport publishes the computed PCR, then operating weight restrictions on the B777-200 ER will be necessary. Possible alternatives to restricting the operating weight are (a) providing an overlay to increase the structural capacity of the runway; or (b) allowing occasional overload operations of the B777-200 ER on the runway, subject to the limitation that the number of such overload operations does not exceed 5 percent of total operations. The latter option is

possible because the ACR of the B777-200ER at it maximum operating weight does not exceed the PCR by more than 10 percent.

- B.8.1.6 From the explorer bar, select "PCR Graph." FAARFIELD displays a bar graph showing visually the ACR values of the six most demanding aircraft in the list (Fig. B-21). The horizontal black bar represents the calculated PCR value. This graph shows that ACR values are less than the PCR, except for the aforementioned B777-200 ER. The PCR value appears in the table in the column associated with the critical aircraft. In this example, the critical aircraft for PCR calculations is also the B747-400.
- B.8.1.7 From the explorer bar, select "PCR Report." FAARFIELD displays details of the PCR computation, in the form of three tables:
 - 1. Results Table 1 reports input traffic data for all Using Aircraft. Percent gross weight on the main gear and tire pressure values are those applicable to ACR calculations, and may differ from the values used for design.
 - 2. Results Table 2 gives information on the critical aircraft: critical aircraft equivalent annual departures (which should be equal to or greater than the actual annual departures for that aircraft in Results Table 1); the computed MAGW of the critical aircraft (which will be greater than the operating gross weight if ACR < PCR); the ACR thickness for the critical aircraft at the MAGW, and the PCR, which is defined as the ACR of the critical aircraft at the MAGW.
 - 3. Results Table 3 lists calculated ACR information for the Using Aircraft. If the CDF is greater than 1.0, at least one of the listed aircraft will have ACR > PCR.
- B.8.1.8 Clicking "Save as PDF" at the top of the screen saves a copy of the generated report (Figure B-22).

Figure B-17. Screen Shot of FAARFIELD in PCR Mode with Data for Rigid Example 1

Octament Grant and	mon 🔒 Save Jub 🔒	Sam An Prine	44 X Cose In	a Dored Alia	which the County	🛣 tai					10000=00
Section											
Job Name: PCII I	ixamples	PCR		+	But	Status Gear	Studue				
Section Name: Bush	Foimule 1	V Ind	ude in summa	ry moon	Rue Batch			1			8
	Protection 1	1.000 0000	10.000		C 1 0 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1						
Perernent Layers											
Pavement Type:	New Rigid					EAG BCC	Lotace	-	1=16.0 in thes	DULE-650 m	
Matterial		Thickness (m) Egin)	k ipci	R (pail)			A		1 de nev	1
	ace	16.0	400000	0	650			-	12		
P-401/P-403 H	MA Stabilized	8.5	402000		104	100	1.12	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 5 1	2.00	
P-209 Crushed	Aggregate	6.0	25/000		_	17121 ¹¹					1.0
Subgrade			7900	103.6			æ : 👘			n (n)	45
Design Life: 20 Results Calculated Life:	S Totai thic	intest for the top	ligh Layw θ/TC of the subgra	Dalatha Sel Ration 1 de 30.0 m	ested Läyer	P308 Crass	T EI		Triad inches Paralel Kentolik pol		
Design Life: 20 Results Calculated Life	S Total thick	where As The De	aign Layw P/TC of the subgra	Delete Sel Ratio: 1 de 30.0 m		Patri Cran			THE DEFENSION	E-33000	
Design Life: 20 Results Calculated Life	5 Total theo	where the top	eign Layw P/TC of the subgra	Deletre Sel	under state of the	Public Cran		Copy Structure	To Cipboard		
Design Life: 20 Results Calculated Life Inaffic: Stored Aincraft Max	Totar thick	whees to the top	P/TC of the subgra	Delene Sal Ration 1 de 30.0 in.	ected Layer	Public Cran		Copy Structure	To Cipboard	ector Prein	e Aeroat M
Design Life: 20 Results Calcolated Life Traffic: Shored Aincraft Mic: Airguane Name	Total the Appendix C PCR Eaa Gross Tax Weight (Iba)	Intent As The De Intensis to the top	B/TC B/TC of the subgra Soon Alext Admust Growth (N)	Delene Sal Retin: 1 de: 30.0 m aft Mix to File Total Departures	ected Layer	Averaft from I	Lor J/C Rate:	Copy Structure Innove Triesched / Taro Pressure (pa)	This Contract Contrac	ection Delet	e Aeroath M Sparing
Design Life: 20 Results Calcolated Life Traffic: Shored Aincraft Mic: Airglane Nama A300-54/C4 Std Bogs	Appendix C PCR Eaa Gross Tan Weight (Ba)	Interest As The De Interest to the top Mpte + Atmual Departures 1500	B/TC B/TC of the subgra Save Alext Admual Growth (%) 0	Delene Sal Ration 1 de 30.0 m. aft Mix to File Departures 20000	ected Layer	Averaft from CCPF Max for Avglane	Lot 0	Copy Structure Innove Telected / Two Pressure (pail) 216	The Distance of Control of Contro	ector Delet Source (n) 365	e Aerraft M Sparing 55.0
Design Life: 20 Results Calculated Life Traffic: Stored Amorath Mac. Applane Mama A300-84/C4 Sto Bogs A315-100 and	Appendix C PCR Eas Groat Tan Weight (bin) 1 141078	mple + Annual Disponse	Byte Byte Save Alec Save Alec Growth (N) 0	Delene Sal Ration 1 de 30.0 in. att Mix to File Total Departures 20000 24000	ected Layer	Alexaff Born CDF Marshare D	Let 0 0	Copy Structure Two Pressure (pei) 216 172	Tel.2 Inches Sci. 10.1.6 per 10 CSpboard Vecraft From Se Petrant GW S420% S226%	ecton Delet Dual Tre Searce (n1) 365 363	e Airoath M Spaining Spaining Spaining S5.0 E0
Design Life: 20 Results Calculated Life: 20 Traffic: 20 Stored Ancraft Mic: 20 Active Name Actor Barca Stations Actor 100 and 8757-300	Appendie C PCR Eau Group Tan Weight Uba) • 355747 14107/8 140000	Intert As The De Intersis to the top Intersis to the top Annual Departments 1500 6000	B/TC B/TC of the subgro Save Alect Growth (NJ) 0 0 0	Delene Sal Ratim 1 de 30.0 in de 30.0 in de 30.0 in de 20.0 in Departures 20000 120000	Clear A Cost during Cost during 0 0	Alexaft from 1 CDF Max for Argiane U	Lee 0 0 0 0 0 0	Copy Structure Innove Telected / Two Pressure (psi) 216 172 201	to Clyboard Herory From Se Parcent GW m Gaar 92,40% 92,40%	ection Delet Dual Tre Searing 0n1 36:5 30:3	e Aircraft M Sparen Sparen Sparen S550 600 9.0
Design Life: 20 Results Calculated Life: 20 Traffic: 20 Stored Ancraft Mic: Acquare filame A305-5100 and 6373-500 8737-500	Appendix C PCR Eas Gross Tarl Weight Usa) 555747 141078 14000 877000	Rippe + Annual Departures 1300 6000 1000	ByTC ByTC of the subgra Steen Alexa Admusi Growth (Ni) 0 0 0 0	Antim 1 Antim 1 de 30.0 in. att Mix to File Total Departures 20000 20000 20000	CDF Controluctions 0 0 0 0	Averaft from CDF Max for Argane	Let 0 0 0	Copy Structure Immore Selected / Two Pressure (sel) 216 172 201 200	Tel. 2 Inches Re-103.6 pci to Chybonard Percard From Se Percard GW Im Guar S4.00% 92.40% 46.00%	ector Delet Dual Trie Seeing (m) 365 365 365 44.0	e Arcost M Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring
Denign Life: 20 Results Calculated Life: Stored Ancraft Mis: Acquare Name A305-84/C4 Sto Bogs A355-84/C4 Sto Bogs A355-800 atd B737-300 B747-400 Belly	Appendix C PCN Esa Gross Tan Weight (Es) 141078 141078 141078 147000 877000 877000	Interest As The De Interest to the top Annual Department 1550 1300 6300 1000 1000	Bync Lawy Bync of the subgra Saen Alece Annual Growth (Nij 0 0 0 0 0	Delene Sal Ratim 1 de 30.0 H. de 30.0 H. att Mix to File Total Departures 20000 20000 20000	Chear Al Control Layer Control	Averaft from CCF Max for Acplane	Appropriate Processing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Copy Structure (pel) 216 172 201 200 200	Tel. 2 Inches Rev 103.6 pci to CSpboard To CSpboard Percent From Se Percent GW on Gear S4.00% 90.85% 46.05%	ection Defin Spacing (m) 36.5 36.3 30.5 36.4 30.5 36.4 44.0	e Aecraft M Sandam Spanng 55.0 60 90 58.0
Denign Life: 20 Results Calcolated Life Stored Ancraft Max Acquare flame Actor 64/C4 Std Bogs ASTS-100 atd 8737-300 8747-400 8747-400 8747-400 8747-400 8757-200 ER	Appendix C PCR Ease Groat Tan Weight (bit) # 385747 141978 140000 #77000 #77000 #77000 #77000	Interest Aa The De Interest to the top Interest to the top Annual Department 1500 1300 6000 1000 2000	ByTC ByTC of the subgra Steen Alexa Acrosal Growth (NJ) 0 0 0 0 0 0 0 0	Delene Sal Ratim 1 de 30.0 H. de 30.0 H. aff Mix to File Total Department 30000 24000 30000 20000 20000 20000 20000	ctiel Layer Clear A CDF Contributions 0 0 0 0 0	Averally born CDF Max for Averally born CDF Max for Averally 0 0 0 0 0 0 0 0 0	P/C flatic 0 0 0 0 0 0	Copy Structure Copy Structure (pai) 216 172 281 200 200 190	Tel. 2 Inches Rev 101.6 pcs 10 CSpboard 10	ection Defet Dual Trip Spacing (m) 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5	e Alecath M Spaining 55.0 6.0 9.0,0 58.0 56.0
Design Life: 20 Results Calculated Life Stored Amoralt Max Action Marcalt Max Action Marcalt Max Action 100 and 8737-300 8747-400 Belly 6747-400 Belly 6757-200 EB 8777-200 EB	Appendix C PCR Eaa Groat Tan Weight (bin) 141078 140780 877000 877000 838000 657000	mple + Annual Dispon 1300 6000 1000 1000 1000 1000	Byrrc Byrrc Save Aler Save Aler Growth (Ni) C C C C C C C C C C C C C C C C C C C	Delene Sal Ratim 1 de 30.0 in. de 30.0 in. de 30.0 in. de 30.0 in. de 20.0 in. de 20.0 in. 20000 20000 20000 20000 20000 20000 20000 20000	cted Layer Clear A CDF Contributions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Averaff Born CDF Max for Areplane 0 0 0 0 0 0 0 0 0 0 0	Approximation of the second seco	Copy Structure (pai) 216 216 216 216 216 216 210 210 210 210 210 210 210 210 210 210	The D locker Here D	ector Delet Dual Tro Searing (m) 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5	e Akrosth Mi Sparing 55.0 640 56.0 56.0 57.0

in	the Class and Other Sector B Section F	Law in Charles	X-Class tob D	Sceni Amonth.	Me & Cente	1.m	(Direct States X to
	Section Section Report						×
	Job Name PCR Examples	PCIL			Rom	Status Gear Structure	
	Section Name: Rigid Example 1 Pavement Lavers	🕑 include	in summary tep	wrt [] Au	in Batch	PCR Calculation Completed Run Timel 435 seconds PCR = 917/R/D/W/T	
	Pavement Type: New Rigid						
	Moterial 	Thickness (in.) 16.0	£ (pe) 4000000	R (pc)	# (pel) 650		
	P-401/P-401 HMA Stabilized P-209 Crushed Appreciate	8.0	480808- 25080		1		
	Subgrade		7800	103.6			
	Design Life: 20	Select As The Design	n Layer Dr P/TC Ratio	dete Select	ed Layer		

Figure B-18. FAARFIELD PCR Output – Rigid Example 1

1	action Section Report	PCR Report	0000									
	lob Names PCR Econ	rgibes :	PCR			mun -	Status Gear	Structure				
	Section Name: Rigid Eur	ngie 1	🕑 Ind	ude in summa	ry report	Run Botch	PCR Calcula Run Times A	ition Complete U9 seconds	id			
	Pavement Layers						POR = 917/	R/D/W/T				
	Pavement Type: N	ew Rigid										
Moterial		Thickness (M	Thickness (InJ E Ipsi)		pci) = (psi							
	P-401/P-403 HMA	Stabilized	0.8	-400000		11	1					
	P-201 Crushed Aggregate		6.0	25000			1					
	Subgrade			7800	10	3.6						
	Stored Aircraft Miz: 100	ientia C PCR Exar	aple -	Save Ains	aft Mis to	file Ora	All Arcraft from 1	Lat B	move Selected A	rcraft From Sec	tion Delete	Arrenañ Mo
	Airplane Name	Gross Taos Weight Shu)	Annual Departures	Annual Glowth (%)	Total Departs	CDF Contributi	CDF Max for Arglane	F/C Ratio	Ten Pressure (psi)	Persant GW on Gear	Dual Tim Spacing (in)	Tanslern Spacing
- 12	A300-64/C4 Ski Bogie	365747	1500	0	30000	0.1	0.11	3.65	216	94.00%	36.5	55.0
12	A319-100 std	141978	1200	0	24000	0	0	\$.73	173	92.62%	36.5	0.0
		140000	6000	0	120000	0	0	3.60	201	90.06%	30.5	0.0
	8737-300	Trees of the						100	200	46.65%	440	and the second sec
	8737-300 8747-430	877000	1900	0	20000	0.66	0,66	22				580
	8717-300 8747-430 8747-439 Bely	877000	1990 1000	0	20000 29000	0.66	0,66	3.51	200	46.66%	44.0	58.0 58.0
A CONTRACTOR OF	8737-360 8747-400 8747-400 Belly 8767-200 EH	877000 877000 396000	1900 1000 2900	0	20000 20000 40000	0.66 0 0.07	0.66 0.66 0.08	3.51 3.60	200 190	46.66% 90.52%	44.0 45.0	58.0 58.0 56.0
	8737-300 8747-400 8747-406 BeBy 8767-200 EH 8777-200 EH	877000 877000 396000 657000	1900 1000 2900 1000	0 0 0 0	20000 20000 40000 20000	0.66 0 0.07 4	0.66 0.66 0.08 4.01	3.51 3.68 4.12	200 190 205	46.66% 90.82% 91.00%	44.0 45.0 35.0	58.0 58.0 56.0 57.0

Figure B-20. FAARFIELD Traffic Table - Rigid Example 1 (ACR Values)

Figure B-22a. FAARFIELD PCR Report - Rigid Example 1

F	ederal Aviation Administration FAARFIELD 2.0 PCR Report
	FAARFIELD 2.0.0.f Beta 07/13/2020
	Working directory is C:\Users\David Brill\Documents\My FAARFIELD
Job Name: PCR	Examples
Section: Rigid Exan	iple 1
This file name = PCR	Results Rigid 2020-07-16 17:52:37.txt
Evaluation pavemen	t type is rigid and design program is FAARFIELD.
Section name: Rigid	Example 1 in job file: C:\Users\David Brill\Documents\Wy FARFIELD\PCR Examples.JOB.xml
Units = US Customar	
Analysis Type: New	Rgid
Subgrade Modulus =	7800psi (Subgrade Category is D(7k))
Evaluation Pavemen	t Thickness = 30.0 in.
Pass to Traffic Cycle	(PtoTC) Ratio = 1.00
Maximum number of	wheels per gear = 6
CDF = 4.840	

No.	Aircraft Name	Gross Weight Ibs	Percent Gross Weight	Tire Pressure psi	Annual Departure	20 Years Coverage
1	A300-B4/C4 Std Bogie	365747	94.00	216.1	1500	8225
2	A319-100 std	141978	92.60	173.0	1200	6435
3	B737-300	140000	90.86	201.0	6000	30892
4	8747-400	877000	46.66	200.0	1000	5717
5	8747-400 Belty	877000	46.66	200.0	1000	5705
6	8767-200 ER	396000	90.82	190.0	2000	10883
7	8777-200 ER	657000	91.80	205.0	1000	4853
8	DC8-63/73	330000	96.12	196.0	3000	17124

Results Table 1. Input Traffic Data

Figure B-22b. FAARFIELD PCR Report - Rigid Example 1 (continued)

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft	ACR Thick at max. MGW (in.)	PCR//R/D
1	B777-200 ER	1202	606255	18.77	917.5

Results Table 2. ACR Value

Results Table 3. Flexible ACR at Indicated Gross Weight and Strength

No.	Aircraft Name	Gross Weight Ibs	Percent Gross Weight on Main Gear	Tire Pressure psi	ACR Thick (in.)(D)	ACR//R/D
1	A300-B4/C4 Std Bogie	365747	94.00	216.1	16.8	738.6
2	A319-100 std 141978		92.60	173.0	12.5	412.4
3	8737-300 140000		90.86	201.0	12.8	429.3
4	B747-400	877000	93.32	200.0	18.1	855.2
6	8767-200 ER	396000	90.82	190.0	16.6	714.9
7	8777-200 ER	657000	91.80	205.0	20	1040.2
8	DC8-63/73	330000	96.12	196.0	16.2	683.6

B.8.2 <u>Rigid Pavement Example 2</u>

B.8.2.1 The second example has the same traffic and rigid pavement structure as Example 1, but the estimated concrete strength is increased to 720 psi. The structure is as shown in Figure B-23, and the other input data are as shown in Figure B-17. As in Rigid Example 1, the airport has a parallel taxiway configuration (Figure A1-1a) such that the P/TC ratio = 1. After running PCR, the PCR Graph and PCR Report are shown in Figures B-24 and B25, respectively. For this example, the computed PCR is 1089/R/D/W/T and the total CDF = 0.540. Following the practice of reporting PCR to the nearest even multiple of ten, publish PCR 1090/R/D/W/T. Figure B-10 shows that all operating aircraft have ACR < PCR. Hence, no weight restrictions are required on the operating fleet, which is consistent with CDF < 1.0. (In general, CDF > 1.0 indicates that at one aircraft in the fleet will have ACR > PCR).

Figure B-24. FAARFIELD PCR Graph – Rigid Example 2

Figure B-25. FAARFIELD PCR Report - Rigid Example 2

Federal Aviation Administration FAARFIELD 2.0 PCR Report FAARFIELD 2.0.0.f Beta 07/13/2020 Working directory is C:\Users\David Brill\Documents\My FAARFIELD							
Job Name: PCR Examples							
Section: Rigid Example 2							
This file name = PCR Results Rigid 2020-07-17 13:24:42.txt							
Evaluation pavement type is rigid and design program is FAARFIELD.							
Section name: Rigid Example 2 in job file: C:\Users\David Brill\Documents\My FAARFIELD\PCR Examples.JOB.xml							
Units = US Customary							
Analysis Type: New Rigid							
Subgrade Modulus +7800psi (Subgrade Category is D(7k))							
Evaluation Pavement Thickness = 30.0 in.							
Pass to Traffic Cycle (PtoTC) Ratio = 1.00							
Maximum number of wheels per gear = 6							
CDF = 0.540							

Results Table 1. Input Traffic Data

No.	Aircraft Name	Gross Weight Ibs	Percent Gross Weight	Tire Pressure psi	Annual Departure	20 Years Coverage
1	A300-B4/C4 Std Bogie	365747	94.00	216.1	1500	8225
2	A319-100 std	141978	92.60	173.0	1200	6435
3	B737-300	140000	90.86	201.0	6000	30892
4	8747-400	877000	46.66	200.0	1000	5717
5	8747-400 Belly	877000	46.66	200.0	1000	5705
6	8767-200 ER	396000	90.82	190.0	2000	10883
7	8777-200 ER	657000	91.80	205.0	1000	4853
8	DC8-63/73	330000	96.12	196.0	3000	17124

Figure B-25. FAARFIELD PCR Report - Rigid Example 2 (continued)

Results Table 2. ACR Value

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft	ACR Thick at max. MGW (in.)	PCR//R/D
1	8777-200 ER	1157	676972	20.46	1089.4

Results Table 3. Flexible ACR at Indicated Gross Weight and Strength

No.	Aircraft Name	Gross Weight Ibs	Percent Gross Weight on Main Gear	Tire Pressure psi	ACR Thick (in.)(D)	ACR//R/D
1	A300-B4/C4 Std Bogie	365747	94.00	216.1	16.8	738.6
2	A319-100 std 141978		92.60	173.0	12.5	412.4
3	8737-300	140000	90.86	201.0	12.8	429.3
4	8747-400	877000	93.32	200.0	18.1	855.2
6	8767-200 ER	396000	90.82	190.0	16.6	714.9
7	8777-200 ER	657000	91.80	205.0	20	1040.2
8	DC8-63/73	330000	96.12	196.0	16.2	683.6

B.8.2.2 Assuming that the airport has a central taxiway configuration rather than parallel effectively doubles the number of coverages on the runway and reduces the PCR. In Figure B-26, the only change is that the P/TC ratio has been increased from 1 to 2, reflecting the central taxiway configuration in Fig. A1-1b. With this change, the computed PCR is now 1034/R/D/W/T, and the total CDF is 1.07. Following the practice of reporting PCR to the nearest even multiple of ten, publish PCR 1030/R/D/W/T. Because the total CDF > 1.0, we expect that at least one of the listed aircraft has ACR > PCR. Figure B-27 shows that this is in fact the case, that the ACR of the B747-400 (1040/R/D) now exceeds the published PCR just slightly (by less than 1%). Following ICAO guidance that allows occasional overload operations by aircraft with ACR up to 10% above the reported PCR, operations of the B747-400 would still be allowed on this pavement, but the number of such operations at full weight would be limited to 5% of total operations on the taxiway. In addition, the taxiway pavement should be monitored for damage after each overload operation.

-		1.			C 0000 200							
Dopen Job (+) Nei	w Section 🗃 Save Job 🛃	Seve As Bise	ve All 🗙 Oose	stob Stored A	ircraft Min 👲 Cra	inte 🏦 Edit					()Help mil	2
Section CDF Grag	oh PCR Report PCR G	aph										
Job Name: P	CR Examples	PCR	PCR +		Run	Status Gear Structure		ure				
Section Name: R	igid Example 2	V in	nclude in sum	nary report	Run Batch	PCR Ca Run Tu	ilculation Cor	mpleted				
Pavement Layers							1034/R/D/W	/π				
Pavement Type	New Rigid					_						
Material		Thickness (in.) E (pr	i) k (p	nci) R (ps	0						
> P-501 PCC	Surface	16.0	4000	000	720							
P-401/P-40	3 HMA Stabilized	8.0	4000	00								
P-209 Crust	hed Aggregate	6.0	7500	0								
Subgrade			7800	103	.6							
Design Life: 20 Results	3	Select As The E	Design Layer P/	Delete :	Selected Layer	0						
Design Life: 20 Results Calculated Life:	Total thic	Select As The E kness to the to	Design Layer P/ op of the subg	TC Ratio: 2 rrade: 30.0 in	Selected Layer							
Design Life: 20 Results Calculated Life:	Total thic	Select As The E kness to the to	Design Layer P/ op of the subg	Delete : TC Ratio: 2 prade: 30,0 in	Selected Layer							
Design Life: 20 Results Calculated Life: 4 Traffic Stored Aircraft Min	Total thic	Select As The E kness to the to	Design Layer P/ Dop of the subg	C Ratioi 2 TC Ratioi 2 grade: 30.0 in	Selected Layer	e All Aircraft fr	om List	Remove Sele	cted Aircraft Fr	om Section	Delete Aircraft	
Design Life: 20 Results Calculated Life: Traffic Stored Avcraft Mi Amplane Name	Total thic Total thic as Appendix C PCR Exa Gross Taxi Weight (Ibs)	kness to the to mple - Annual Departures	Design Layer P/ Dop of the subg Save Al Annual Growth (%)	Delete : TC Ratio: 2 grade: 30.0 in rcraft Mix to 1 Total Departures	File Clear CDF Contributions	e All Aircraft fr CDF Max for Airplane	rom List P/C Ratio	Remove Sele	cted Aircraft Fr Percent GW en Gear	om Section Dual Time Spacing (in.)	Delete Aircraft Tandem Tirr Spacing (in.)	
Design Life: 20 Results Calculated Life: Traffic: Stored Aircraft Mir Airplane Name A300-B4/C4 Std B	a: Appendix C PCR Exa Gross Taul Weight (Ibs) ogje 355747	Select As The C kness to the to mple - Annual Departures 1500	Design Layer P/ pp of the subg Save Ai Annual Growth (%) 0	TC Ratio: 2 TC Ratio: 2 arade: 30.0 in recaft Mix to 1 Departures 30000	File Clea COF Contributions 0.01	e All Aircraft fr CDF Max for Airptane 0.02	rom List P/C Ratio 3.65	Remove Sele Tine Pressure (psi) 215	cted Aircraft Fr Percent GW on Gear 94.00%	om Section Dual Time Spacing (in.) 36.5	Delete Aircraft Tandem Tire Spacing (in.) SS.0	
Design Life: 20 Results Calculated Life: 4 Traffic Stored Ancraft Mit Amplane Name A300-B4/C4 Std B	a: Appendix C PCR Exa Gross Taxi Weight (Dis) 365747 141978	Select As The E kness to the to mple - Annual Departures 1500 1200	Design Layer P/ Dop of the subg Save Al Annual Growth (%) 0 0	rcraft Mia to i Departures Departures 30000 24000	File Clear COF Contributions 0.01 0	r All Aircraft fr CDF Max for Airplane 0.02 0	rom List P/C Ratio 3.65 3.73	Remove Sele Tire Pressure (psi) 216 173	cted Aircraft Fr Percent GW on Gear 94.00% 92.60%	om Section Dual Tim Spacing (in) 36.5 36.5	Delete Aircraft Tandem Tirc Spacing (in: SS.0 0.0	
Design Life: 20 Results Calculated Life: Traffic Stored Aircraft Mi Airplane Name A300-B4/C4 Std B A319-100 atd B737-300	a: Appendix C PCR Exa Gross Taxi Weight (ba) ogie 365747 141978 140000	Select As The E kness to the tr mple - Annual Departures 1500 1200 6000	Design Layer P/ Dop of the subg Save Al Annual Growth (%) 0 0 0	TC Ratio: 2 TC Ratio: 2 TC Ratio: 2 TC Ratio: 2 30.0 in reraft Mix to 1 Total Departures 30000 120000	File Clear CDF Contributions 001 0	e All Aircraft fr CDF Max for Airptane 0.02 0 0	rom List P/C Ratio 3.65 3.73 3.88	Remove Sele Tire Pressure (psi) 215 173 201	Cled Aircraft Fr Percent GW on Gear 94.00% 92.60%	Dual Tire Spacing (in.) 36.5 36.5 36.5	Delete Aircraft Tandem Tirr Spacing (in. 55.0 0.0 0.0 0.0	
Design Life: 20 Results Calculated Life: Traffic Stored Aircraft Mi Airplane Name A300-Ba/C4 Std B A319-100 std B737-300 B747-400	a: Appendix C PCR Exa Gross Taxi Weight (Jbs) ogie 365747 141978 140000 87700	Select As The E kness to the to Annual Departures 1500 1200 6000 1000	Design Layer P/ Dop of the subg Save Al Annual Growth (%) 0 0 0	TC Ratio 2 TC Ratio 2 reraft Mia to 1 Total Departures 30000 24000 120000	File Clear CDF Contributions 0.01 0 0.12	e All Aircraft fr Airptane 0.02 0 0 0.13	rom List P/C Ratio 3.65 3.73 3.88 3.5	Remove Sele Tire Pressure (psi) 216 173 200 200	cted Aircraft FP Percent GW on Gest 94,00% 92,60% 90,15%	om Section Dual Tire Spacing (in.) 36.5 36.5 36.5 30.5 44.0	Delete Aircraft Tandem Tirr Spacing (m. SS.0 0.0 0.0 S8.0	
Design Life: 20 Results Calculated Life: Traffic Stored Ancraft Mil Airplane Name A300-B4/C4 Std B A319-100 std B747-400 B747-400 Belly	as Appendix C PCR Exa Gross Taxi Weight (Jbs) 141978 140000 877000	Select As The E siness to the to mple • Annual Departures 1500 1200 6000 1000	Design Layer P/ Dop of the subg Sidve Ai Annual Growth (%) 0 0 0 0 0	TC Ration 2 TC Ra	File Clear COF Contributions 0.01 0 0.12 0	r All Aircraft fr CDF Max for Aurptane 0.02 0 0 0.13	rom List P/C Ratio 3.65 5.73 3.86 3.5 3.51	Remove Sele Tire Pressure (pai) 216 173 200 200 200	cted Aircraft Fr Percent GW on Gear 94.00% 92.60% 90.85% 45.66%	om Section Dual True Spacing (in.) 36.5 36.5 36.5 36.5 44.0 44.0	Delete Aircraft Tandem Tire Spacing (in: SS.0 0.0 0.0 0.0 58.0 58.0	
Design Life: 20 Results Calculated Life: 4 Traffic Stored Aircraft Mit Airplane Name A319-100 std 8737-300 8747-400 Beily 8747-400 Beily 8767-200 ER	at Appendix C PCR Exa Gross Taxi Weight (ba) 141978 141978 1419700 877000 877000 396000	Select As The E kiness to the to mple - Annual Departures 1500 1000 1000 2000	Design Layer P/ Dop of the subc Save Ai Annual Growth (%) 0 0 0 0 0 0 0 0 0 0 0 0	TC Ratio: 2 TC Ra	File Clear COF Contributions 0.01 0 0.01	r All Aircraft fr CDF Max for Airplane 0.02 0 0.13 0.13 0.01	rom List P/C Ratio 3.65 3.73 3.88 3.51 3.51 3.68	Remove Sele Tire Pressure (psi) 216 173 201 200 200 190	Cted Aircraft Fr Percent GW on Gear 94.00% 90.85% 46.66% 90.82%	om Section Dual Time Spacing (in.) 36.5 30.5 30.5 30.5 44.0 45.0	Delete Aircraft Tandem Tint Spacing (in.) SS.0 0.0 0.0 0.0 SB.0 SB.0 SB.0 SB.0 SB	
Design Life: 20 Results Calculated Life: Traffic Stored Aircraft Mi Airplane Name A300-B4/C4 Std B A319-100 atd B737-300 B747-400 Belly B747-400 Rel B747-200 ER	a: Appendix C PCR Exa Gross Taxi Weight (ba) a 55747 141978 140000 877000 396000 657000	Select As The C kness to the tr mple - Annual Departures 1500 1200 6000 1000 1000	Design Layer P/ Save Al Annual Growth (%) 0 0 0 0 0 0 0 0 0 0 0 0	TC Ratio: 2 TC Ratio: 2 TC Ratio: 2 TC Ratio: 2 30.0 in Total Departures 30000 24000 20000 20000 20000	File Clear CDF Contributions 0.01 0 0.12 0 0.01 0.01 0.01 0.02	e All Aircraft fr CDF Max for Airptane 0.02 0 0 0.13 0.13 0.13 0.01 0.03 0.031	rom List P/C Ratio 3.65 3.73 3.86 3.5 3.51 3.68 4.12	Remove Sele (psi) 216 173 200 200 200 200 200 205	cted Aircraft Fr Percent GW on Gear 94,00% 92,60% 46,66% 90,82% 91,80%	om Section Dual Tire Spacing (in.) 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5	Delete Aircraft Tandem Tire Späcing (in.) 55.0 0.0 0.0 0.0 56.0 56.0 56.0 57.0	

Figure B-26. FAARFIELD PCR Output – Rigid Example 2 (P/TC = 2)

Figure B-27. FAARFIELD PCR Chart – Rigid Example 2 (P/TC = 2)

B.8.3 <u>Rigid Pavement Example 3.</u>

- B.8.3.1 The third example has the same traffic as Examples 1 and 2, but in this case the existing concrete pavement has been overlaid at some point with a thin asphalt wearing surface. The ICAO ACR-PCR system does not include separate ratings for composite or overlay pavements. All pavements are assigned either "R" or "F" in the pavement type element of the PCR code. In general, the letter code should reflect the primary structural behavior of the pavement. In other words, if the pavement primarily resists loads through bending action in the panel, then the pavement should be given an R rating, Otherwise, use F. As illustrated in this example, FAARFIELD can help make this determination based on the entered pavement characteristics.
- B.8.3.2 Assume the pavement structure as shown in Figure B-28. Enter the data in FAARFIELD. After opening FAARFIELD, select "PCR" from the dropdown function list at the top of the screen. Select the "HMA on Rigid" pavement type from the drop-down Pavement Type list. Enter or modify the structure layers directly in the Pavement Layers table, or by clicking on the image of the pavement cross section. By default, the concrete later is assigned a Structural Condition Index (SCI) value of 80 prior to overlay. Given the difficulty of determining the in-situ structural condition of the concrete layer in an overlay structure, it is generally sufficient to retain the default value of SCI when determining PCR. However,

the engineer should ensure that the value of flexural strength R is representative of the actual in-situ flexural strength, as concrete flexural strength has a significant effect on PCR. Using the aircraft library, enter the aircraft list from Table B-1, and modify the gross weights and annual departures as necessary. The default value of P/TC is 1 and does not need to be changed.

B.8.3.3 Click "Run." FAARFIELD will perform the PCR computations automatically. When the calculation is complete, the computed PCR value will appear in the "Status" screen at upper right (Figure B-29). For this example, the computed PCR is 774/R/B/W/T. Despite the fact that the pavement has an asphalt overlay, FAARFIELD reports rigid PCR because the primary resistance to load comes from the 16-inch PCC slab. Note that FAARFIELD automatically identifies the correct subgrade category based on the entered subgrade properties. FAARFIELD selects W as the default tire pressure category for rigid pavements. However, in this case it may be necessary to report a lower tire pressure category depending on the quality of the asphalt surface later. Following the practice of reporting PCR to the nearest even multiple of ten, and after determining that the surface asphalt can tolerate tire pressures up to 254 psi, publish PCR 770/R/B/X/T.

Job Name: PCR Examples PCR Run Status Gear Structure Section Name: Rigid Example 3 Include in summary report Run Batch Pavement Layers Pavement Type: HMA on Rigid PCR = 774/R/B/W/T Pavement Type: HMA on Rigid Include in summary report R (psi) P-209 Crushed Aggregate 5.0 400000 650 P-209 Crushed Aggregate 6.0 75000 172.4 Design Life: 20 SCI: 80 Percent CDFU: 100 Pavesults Procent CDFU: 100 P/TC Ratio: 1	Section PCR Gr	aph								×	ľ
Section Name: Rigid Example 3 Include in summary report. Run Batch Pavement Layers Pavement Type: HMA on Rigid Include in summary report. Run Batch Material Thickness (in.) E (psi) k (pci) R (psi) > P-401/P-403 HMA Overlay 2.5 200000 F (psi) R (psi) P-501 PCC Surface 16.0 4000000 650 F (psi) R (psi) R (psi) P-209 Crushed Aggregate 6.0 75000 1 1 Select As The Design Layer Delete Selected Layer Delete Selected Layer Design Life: 20 SCI: 80 Percent CDFU: 100 Results Results Results Results Results Results	Job Name:	PCR Examples		PCR		*	Run	Status G	ear Structure	1-	
Pavement Type: HMA on Rigid Material Thickness (in.) E (psi) k (pci) R (psi) > P-401/P-403 HMA Overlay 2.5 200000 650 P-501 PCC Surface 16.0 4000000 650 P-401/P-403 HMA Stabilized 5.0 400000 650 P-401/P-403 HMA Stabilized 5.0 400000 650 P-209 Crushed Aggregate 6.0 75000 1 Subgrade 15000 172.4 1	 Section Name:	Rigid Example 3		✓ Include	in summary r	eport	Run Batch	PCR Calo Run Tim PCR = 7	culation Completed e: 711 seconds 74/R/B/W/T		
Material Thickness (in.) E (psi) k (pci) R (psi) > P-401/P-403 HMA Overlay 2.5 200000 650 P-501 PCC Surface 16.0 400000 650 P-401/P-403 HMA Stabilized 5.0 400000 100 P-209 Crushed Aggregate 6.0 75000 12.4 Subgrade 15000 172.4 100 Design Life: 20 SCI: 80 Percent CDFU: 100 P/TC Ratio: 1 Results	Pavement Typ	HMA on Rigid			~			-			
> P-401/P-403 HMA Overlay 2.5 200000 650 P-501 PCC Surface 16.0 4000000 650 P-401/P-403 HMA Stabilized 5.0 400000 9 P-209 Crushed Aggregate 6.0 75000 9 Subgrade 15000 172.4 9	Material		Thick	ness (in.)	E (psi)	k (pc	i) R (psi)				
P-501 PCC Surface 16.0 4000000 650 P-401/P-403 HMA Stabilized 5.0 400000 1 P-209 Crushed Aggregate 6.0 75000 1 Subgrade 15000 172.4 1 Select As The Design Layer Delete Selected Layer Design Life: 20 SCI: 80 Percent CDFU: 100 P/TC Ratio: 1 Results	> P-401/P-4	403 HMA Overlay	2.5		200000	0					
P-401/P-403 HMA Stabilized 5.0 400000 P-209 Crushed Aggregate 6.0 75000 Subgrade 15000 172.4 Select As The Design Layer Delete Selected Layer Design Life: 20 SCI: 80 Percent CDFU: 100 P/TC Ratio: 1 Results	P-501 PC	P-501 PCC Surface			4000000		650				Ĺ
P-209 Crushed Aggregate 6.0 75000 Subgrade 15000 172.4 Select As The Design Layer Design Life: 20 SCI: 80 Percent CDFU: 100 P/TC Ratio: 1 Results	P-401/P-4	403 HMA Stabilized	5.0		400000	j.					
Subgrade 1500 172.4 Select As The Design Layer Design Life: 20 SCI: 80 Percent CDFU: 100 P/TC Ratio: 1 Results	P-209 Cri	ushed Aggregate	6.0		75000						
Select As The Design Layer Delete Selected Layer Design Life: 20 SCI: 80 Percent CDFU: 100 P/TC Ratio: 1 Results	Subgrade	2			15000	172.4					
Calculated Life: Total thickness to the top of the subgrade: 29.5 ID	Design Life: 2 Results	0 SCI: 80 Pr	Select As	The Design U: 100	P/TC Rat	Delete Se tio: 1	elected Layer				

Figure B-29. FAARFIELD PCR Output – Rigid Example 3

APPENDIX C - REPORTING CHANGES TO CERTAIN AIRPORT RUNWAY DATA ELEMENTS

This Advisory Circular affects the following airport runway data.

C.1 Allowable Gross Weight

Aircraft weight data are reported using this AC based upon the PCR calculated for the pavement being evaluated.

C.1.1 <u>Source of Data</u>

Runway weight bearing capacity data may be input by the airport owner or State Aviation Agency. Information is submitted electronically to the FAA Air Traffic Aeronautical Information Services for publication in FAA Flight Information manuals using the Airport Master Record (AMR). Airport Sponsors may update the AMR data elements in the Airport Data and Information Portal (ADIP). Currently this data base accepts gross aircraft weight data for single wheel landing gear (S), dual wheel landing gear (D), dual tandem landing gear (2D) and multiple dual-tandem landing gear (2D/2D2). All other gear types may be reported only with the PCR. The PCR reported must contain all five elements, e.g. 573/F/C/W/T.

C.1.2 <u>Reporting Allowable Gross Weight</u>

The allowable gross aircraft weight for each gear configuration that may utilize the subject runway is published in the Airport Master Record. In addition, a PCR number should also be published for each Runway at the airport. Note the PCR "number" to report is the entire PCR string of five elements: PCR number, pavement type, subgrade category, tire pressure, and method of calculation. The FAARFIELD computer program calculates PCR based maximum gross weights for reporting Runway Weight Bearing Capacity Data as part of the PCR calculation procedure. Alternatively, or if only the PCR is known, a list of PCRbased maximum gross weights for reporting Runway Weight Bearing Capacity Data has been developed and is contained in Appendix D of this AC. Local experience can be considered to report a lower weight, but higher weights are not recommended.

C.2 Pavement Classification Rating (PCR)

C.2.1 <u>Source of Data</u>

The source for Pavement Classification Rating (PCR) data is the airport operator. FAA Part 139 airport certification safety inspectors and State non-Part 139 airport inspectors are instructed to request PCR data from the airport manager as part of the manager interview before an airport inspection or as soon as practical from airport sponsors requesting Part 139 certification.

C.2.2 <u>Reporting PCR</u>

For purposes of airport runway data elements generally published in the Airport Master Record (AMR), the PCR is a number that expresses the load-carrying capacity of a pavement based on all aircraft traffic that regularly operates on the pavement.

C.3 Assigning Aircraft Gross Weight Data

- C.3.1 Tables D-1 and D-2 summarize the process used to assign allowable aircraft gross weight. Tables D-1 and D-2 shows the flexible and rigid ACRs used to assign allowable aircraft gross weight. Allowable gross weight is based on the aircraft gear configuration as issued in FAA Order 5300.7, Standard Naming Convention for Aircraft Landing Gear Configurations, coupled with tire pressure and wheel spacing ranges. The ACR for these standard aircraft results in a recommended maximum gross weight for Runway Weight Bearing Capacity
- C.3.2 The data in Tables D-1 and D-2 were used to develop a list of maximum gross weights for Runway Weight Bearing Capacity Data. These lists (Appendix D) correlate known PCR values for flexible and rigid pavement to maximum allowable gross weights for the four gear types: S, D, 2D, and 2D/2D2.
- C.3.3 The aircraft listed in Tables E-1, E-2, E-3 and E-4 represent generic gear types and typical ranges of weights and tire pressures. There will be cases where the gross weight of an operating aircraft exceeds the allowable gross weight for the relevant gear category as determined from Tables D-1 and D-2, although the operating ACR is less than the reported PCR determined using the procedures in Chapter 4 and in the examples in Appendix B. The values in the tables are not as accurate as the gross weights associated with the ACR assigned by the aircraft manufacturer. The reported PCR is the basis for data in the tables, and the airport manager should rely on the reported PCR, rather than the gross weight data in Tables E-1, E-2, E-3 and E-4 when the ACR of the departing or landing aircraft is known.
- C.3.4 Enter the appropriate table for the subgrade category and read down to the PCR number. Then read across to find the allowable weight values, which are listed in thousands of pounds. Note that, regardless of PCR, the following gross weight values are considered the maximum allowable for each gear category:

Gear Type	Gross Weight (Thousands of Pounds)			
S	120			
D	250			
2D	550			
2D/2D2	1220			

The first example, shown in the table, is for a flexible pavement that supports single (S), dual (D), and dual tandem (2D) gear aircraft. The airport can report a PCR of 300 with subgrade category B support. Refer to Table E-2 for subgrade category B. At the intersection of the PCR value with the gear types S, D, and 2D, find 79 kips (79,000 pounds) is the maximum allowable gross weight for S aircraft, 127 kips (127,000 pounds) is the maximum allowable gross weight for D aircraft, and 215 kips (215,000 pounds) is the maximum allowable gross weight for D aircraft. Local experience can be considered to use a lower weight, but higher weights are not recommended. The field for 2D/2D2 does not contain a value, therefore gross aircraft weight data for 2D/2D2 (Field 38 in the AMR) should be left blank.

FAA Order 5300.7- Standard Naming Convention for Aircraft Landing Gear Configurations

Figure C-1: Aircraft Gear Configuration

- C.3.5 The second example in the table is for a pavement that supports aircraft with single and dual wheel gear configurations. The pavement has a PCR of 430/R/B/W/T. The gross weights at the intersection of the PCR value for a B category subgrade with each gear type is between PCR values 400 and 450. Straight line interpolation between values is recommended. Single wheel gross weight is 108 kips (108,000 pounds). Dual wheel gross weight is 179 kips (179,000 pounds). Local experience can be considered to use.
- C.3.6 lower weights, but higher weights are not recommended. D.3.6 The procedures used to create Tables D-1 and D-2 have been implemented in FAARFIELD 2.0 and are automatically executed when PCR computation is run. In a given case there may be minor inconsistencies between the values in Tables E-1, E-2, E-3 and E-4 and those output by FAARFIELD. In case of a discrepancy, the FAARFIELD values should take precedence.

	Aircraft	Gross	% GW on	Tire		Flexib	le ACR	ē
No.	Name	Weight, lbs.	Main Gear	Pressure, psi	A	В	С	D
1	S-7.5std	7,500	95.00	52.5	18.9	20.4	22.8	26.6
2	S-15std	15,000	95.00	60.0	29.9	41.9	49.6	54.9
3	S-30std	30,000	95.00	75.0	70.2	95.0	105.9	113.8
4	S-45std	45,000	95.00	90.0	125.9	153.9	166.4	175.2
5	S-60std	60,000	95.00	105.0	188.2	216.8	229.6	238.5
6	S-75std	75,000	95.00	120.0	255.2	282.6	294.7	303.0
7	S-90std	90,000	95.00	135.0	325.4	350.3	361.1	368.5
8	S-105std	105,000	95.00	150.0	398.0	419.4	428.3	434.9
9	S-120std	120,000	95.00	165.0	472.3	489.5	496.4	502.2
10	D-37.5	37,500	95.00	65.0	34.7	57.6	71.5	88.2
11	D-50	50,000	95.00	80.0	63.0	89.2	108.0	131.9
12	D-75	75,000	95.00	110.0	128.4	160.5	189.4	230.9
13	D-100	100,000	95.00	140.0	197.4	231.4	272.1	320.9
14	D-125	125,000	95.00	150.0	252.9	294.9	340.7	395.7
15	D-150	150,000	95.00	160.0	307.0	346.9	396.8	455.6
16	D-175	175,000	95.00	180.0	375.2	419	471.3	539.6
17	D-200	200,000	95.00	200.0	442.9	491.7	544.3	622.3
18	D-225	225,000	95.00	220.0	511.7	562.0	616.3	701.5
19	D-250	250,000	95.00	240.0	580.9	630.0	690.9	778.6
20	2D-100	100,000	95.00	120.0	89.2	106.7	124.4	158.0
21	2D-150	150,000	95.00	140.0	153.6	187.6	232.1	301.0
22	2D-200	200,000	95.00	160.0	223.3	277.9	355.7	447.6
23	2D-250	250,000	95.00	170.0	284.7	353.5	454.8	577.5
24	2D-300	300,000	95.00	190.0	346.6	425.9	549.7	708.6
25	2D-350	350,000	95.00	190.0	412.1	509.5	655.7	843.6
26	2D-400	400,000	95.00	200.0	478.0	588.9	759.1	975.3
27	2D-450	450,000	95.00	210.0	533. B	635.7	802.4	1061.7

Table D-1. Flexible ACR Data Used to Establish Allowable Gross Weight

N	Aircraft	Gross	% GW on	Tire Pressure,		Flexib	le ACR	
No.	Name	Weight, lbs.	Gear	Pressure, psi	A	В	С	D
28	2D-500	500,000	95.00	220.0	588.0	678.2	833.0	1118.4
29	2D-550	550,000	95.00	230.0	641.0	706.5	844.3	1118.2
30	2D/2D2-40	640,000	95.00	210.0	351.5	368.6	401.6	490.5
31	2D/2D2-50	800,000	95.00	220.0	449.3	480.8	550.4	727.7
32	2D/2D2-60	960,000	95.00	230.0	553.4	610.1	721.9	1028.9
33	2D/2D2-70	1,120,000	95.00	240.0	663.9	758.3	935.2	1395.2
34	3D-40	480,000	95.00	210.0	355.7	367.02	395.9	509.0
35	3D-50	600,000	95.00	220.0	451.8	474.8	541.5	785.3
36	3D-60	720,000	95.00	230.0	553.1	596.3	729.5	1130.1
37	3D-70	840,000	95.00	240.0	659.4	783.7	979.8	1537.0
38	2D/3D2-40	800,000	95.00	210.0	349.3	356.0	371.5	421.8
39	2D/3D2-50	1,000,000	95.00	220.0	44 2.5	455.0	<mark>487.6</mark>	599.4
40	2D/3D2-60	1,200,000	95.00	230.0	539.4	561.1	619.6	847.7
41	2D/3D2-70	1,400,000	95.00	240.0	639.9	677.6	772.9	1187.0

	Aircraft	Gross	% GW on	Tire		Rigid	ACR	
No.	Name	Weight, lbs.	Main Gear	Pressure, psi	A	в	С	D
1	S-7.5std	7,500	95.00	52.5	12.7	13.6	14.4	16.6
2	S-15std	15,000	95.00	60.0	28.4	33.6	37.1	40.4
3	S-30std	30,000	95.00	75.0	74.6	82.6	87.7	92.6
4	S-45std	45 <mark>,0</mark> 00	95.00	90.0	128.7	138.3	144.4	150.3
5	S-60std	60,000	95.00	105.0	189.0	199.3	205.9	212.0
6	S-75std	75 <mark>,0</mark> 00	95.00	120.0	254.0	264.3	270.8	277.3
7	S-90std	90,000	95.00	135.0	323.0	332.6	338.8	344.8
8	S-105std	105,000	95.00	150.0	394.8	403.4	409.0	414.7
9	S-120std	120,000	95.00	165.0	469.3	476.5	481.2	485.7
10	D-37.5	37,500	95.00	65.0	57.0	69.5	78.2	86.8
11	D-50	50,000	95.00	80.0	96.4	110.9	120.6	130.2
12	D-75	75,000	95.00	110.0	185.5	201.9	212.7	223.3
13	D-100	100,000	95.00	140.0	276.6	294.1	305.5	317.0
14	D-125	125,000	95.00	150.0	351.6	372.0	385.8	399.8
15	D-150	150,000	95.00	160.0	420.3	444.0	460.0	476.3
16	D-175	175,000	95.00	180.0	509.0	533.7	550.5	567.8
17	D-200	200,000	95.00	200.0	598.4	623.9	640.9	659.4
18	D-225	225,000	95.00	220.0	688.3	713.8	731.6	750.7
19	D-250	250,000	95.00	240.0	785.8	811.4	829.2	848.4
20	2D-100	100,000	95.00	120.0	98.4	110.7	126.0	147.6
21	2D-150	150,000	95.00	140.0	177.6	<mark>210.8</mark>	240.9	274.3
22	2D-200	200,000	95.00	160.0	274.9	325.9	365.7	407.8
23	2D-250	250,000	95.00	170.0	361.6	426.7	475.6	526.7
24	2D-300	300,000	95.00	190.0	449.7	527.5	585.4	645.7
25	2D-350	350,000	95.00	190.0	547.0	637.3	703.1	771.3
26	2D-400	400,000	95.00	200.0	641.6	744.0	817.9	894.7
27	2D-450	450,000	95.00	210.0	711.0	823.9	906.6	993.1

Table D-2. Rigid ACR Data Used to Establish Allowable Gross Weight
	Aircraft	Gross	% GW on	Tire	Rigid ACR					
No.	Name	Weight, lbs.	Main Gear	Pressure, psi	A	В	С	D		
28	2D-500	500,000	95.00	220.0	767.6	889.5	981.2	1077.5		
29	2D-550	550,000	95.00	230.0	803.9	930.8	1030.3	1137.4		
30	2D/2D2-40	640,000	95.00	210.0	379.0	437.3	490.7	553.8		
31	2D/2D2-50	800,000	95.00	220.0	524.6	610.9	681.8	760.9		
32	2D/2D2-60	960,000	95.00	230.0	692.8	804.3	890.0	982.4		
33	2D/2D2-70	1,120,000	95.00	240.0	880.3	1013.5	1112.3	1215.4		

INTENTIONALLY LEFT BLANK

APPENDIX D – MAXIMUM AIRCRAFT GROSS WEIGHT TABLES FOR AIRPORT MASTER Record Reporting based on PCR Determination

	Allo	wable GW for FLEX	(1000's d IBLE PC	of Ibs.) R	Allowable GW (1000's of lbs.) for RIGID PCR				
PCR(A)	S	D	2D	2D/2D2	S	D	2D	2D/2D2	
20	2		17	(70)	11	6 875	2 - 15:	24 24	
30	15			1.70	16				
40	19	40			19				
50	22	44	-	-	22		. :=		
60	26	49	<u>i</u>	125	25	38	124	Цŝ	
70	30	53	-	-	29	42	° -	4	
80	33	56	17	(70)	31	45	1.0	2	
90	35	60	101	1.50	34	48			
100	38	64	108		37	51	101		
110	41	68	116	-	40	54	107	-	
120	43	72	124	(La)	43	57	114	-	
130	46	76	132	-	45	59	120	4	
140	48	79	139	1.70	48	62	126		
150	51	83	147	-	50	65	133		
160	53	86	155		53	68	139		
170	56	90	162	-	55	71	145		
180	58	94	169	(La)	58	73	151	2	
190	60	97	176	-	60	76	156	8	
200	63	101	183		63	79	162		
220	67	110	198		67	84	172		
250	74	124	222	(m)	74	93	187	-	
280	80	138	246	140	81	101	203	Щ.	
300	85	147	262	(4) (4)	85	108	214	2 2	
350	95	166	303	-	96	124	243	-	

Table E-1. Subgrade Category A

	Allo	wable GW for FLEX	(1000's o IBLE PC	of lbs.) R	Allowable GW (1000's of lbs.) for RIGID PCR				
PCR(A)	S	D	2D	2D/2D2	S	D	2D	2D/2D2	
400	105	184	3 <mark>4</mark> 1	719	106	143	271	663	
450	115	203	379	801	116	158	300	718	
470	120	210	394	832	120	164	310	740	
500	120	221	420	878	120	172	325	773	
550	120	239	465	955	120	186	352	824	
580	120	250	493	999	120	195	367	853	
600	120	250	511	1027	120	200	378	871	
650	120	250	550	1100	120	214	406	919	
700	120	250	550	1120	120	228	442	966	
750	120	250	550	1120	120	241	484	1009	
780	120	250	550	1120	120	248	517	1034	
800	120	250	550	1120	120	250	545	1051	
850	120	250	550	1120	120	250	550	1094	
880	120	250	550	1120	120	250	550	1120	

	Alloy	wable GW for FLEX	(1000's o IBLE PC	f lbs.) R	Allowable GW (1000's of lbs.) for RIGID PCR				
PCR(B)	S	D	2D	2D/2D2	S	D	2D	2D/2D2	
20	5	020	2	2	10	е С		2	
30	11	19 2 0	- 2	2	14	0		2	
40	14	22	<u>~</u>	s =	17		1 (See	3 12	
50	17	24	2	÷	20	Д	1. See	9 14	
60	20	38	<u>_</u>	-	23	-		а а	
70	23	42	2		26	38		. u	
80	26	46	÷-	. ÷	29	41	1940	-	
90	29	50	÷-	. ÷	32	44	0 4 0	-	
100	31	54	5 4	. ÷	35	47	0 4 0	34	
110	34	57	102	÷.	37	50	100		
120	36	61	108	+	40	53	105	-	
130	39	64	114		43	55	110	-	
140	41	68	120		45	58	115	-	
150	44	71	127	-	48	61	120	-	
160	46	75	132	-	50	63	125	-	
170	49	78	139		53	66	130		
180	51	82	145	-	55	69	135	्रात	
190	54	85	151	-	57	72	140	17	
200	56	89	157	7	60	74	145		
220	61	96	168	-	65	80	154		
250	68	107	185	5	72	88	167	σ	
280	74	119	201	-	78	96	180	-	
300	79	127	215	-	83	102	189	-	
350	90	151	248	-	94	118	212	-	
400	101	168	282	685	104	135	237	-	
450	112	186	314	756	115	152	262	652	
470	116	193	326	785	119	157	271	670	

Table E-2. Subgrade Category B

	Allo	wable GW for FLEX	(1000's o IBLE PC	of lbs.) R	Allowable GW (1000's of lbs.) for RIGID PCR				
PCR(B)	S	D	2D	2D/2D2	S	D	2D	2D/2D2	
490	120	199	338	811	120	163	281	689	
500	120	203	344	824	120	166	286	698	
550	120	221	375	886	120	180	310	744	
580	120	232	394	923	120	188	324	772	
600	120	239	412	948	120	193	333	790	
630	120	250	444	981	120	202	347	816	
650	120	250	467	1003	120	207	356	832	
670	120	250	490	1025	120	213	365	849	
700	120	250	539	1057	120	221	379	874	
750	120	250	550	1111	120	234	404	915	
800	120	250	550	1120	120	247	435	956	
810	120	250	550	1120	120	250	441	964	
850	120	250	550	1120	120	250	470	995	
900	120	250	550	1120	120	250	513	1033	
930	120	250	550	1120	120	250	549	1056	
950	120	250	550	1120	120	250	550	1071	
1000	120	250	550	1120	120	250	550	1110	
1010	120	250	550	1120	120	250	550	1117	

	Allo	wable GW for FLEX	(1000's o IBLE PC	o <mark>f lbs.)</mark> R	Allowable GW (1000's of lbs.) For RIGID PCR				
PCR(C)	S	D	2D	2D/2D2	S	D	2D	2D/2D2	
20	а ²	2	2 120	2 <u>(</u>	9	2	2 1120	2	
30	10	2	120	2	13	2	023	2	
40	12	2	120	2 2	16	2	020	2 2	
50	15	-	1 (La)	-	19	<u>_</u>	1 (See	-	
60	18	-	(a)	-	22	<u> </u>	1 (a)	-	
70	20	-	<u></u>	-	25	<u>_</u>		-	
80	23	40	140	-	28	38	. c.e.	-	
90	26	44	-	-	31	41		~	
100	28	47			33	44		-	
110	31	51	-		36	47		-	
120	33	54		*	39	50		-	
130	36	57	103	. *	41	53	102	-	
140	38	60	107	. *	44	55	106		
150	41	63	112	. *	46	58	110	-	
160	43	66	117	-	49	61	115	-	
170	46	69	121	-	51	63	119		
180	48	72	126	-	54	66	123		
190	51	75	130	-	56	69	128	-	
200	53	78	135	-	59	72	132	-	
220	58	84	144	-	63	77	141	-	
250	65	93	157		70	85	154	-	
280	72	103	169	-	77	93	166	-	
300	77	110	177		81	99	174	-	
350	87	129	198		92	114	194		
400	99	151	222	638	103	130	216	-	
450	110	168	248	692	114	147	238	-	
470	114	175	258	714	118	153	247	-	

Table E-3. Subgrade Category C

	Allo	wable GW for FLEX	(1000's o IBLE PC	of lbs.) R	Allowable GW (1000's of lbs.) For RIGID PCR				
PCR(C)	S	D	2D	2D/2D2	s	D	2D	2D/2D2	
480	116	178	263	724	120	156	252	-	
490	119	181	269	735	120	158	257	639	
500	120	184	274	746	120	161	261	648	
550	120	202	300	800	120	175	284	690	
580	120	212	314	828	120	183	298	715	
600	120	219	324	846	120	189	306	732	
630	120	230	338	874	120	197	319	757	
650	120	236	347	893	120	203	327	773	
670	120	243	357	912	120	208	336	790	
690	120	250	367	930	120	214	344	806	
700	120	250	371	940	120	216	349	814	
750	120	250	396	981	120	230	370	852	
800	120	250	447	1019	120	243	392	891	
830	120	250	495	1041	120	250	407	914	
840	120	250	531	1049	120	250	412	922	
850	120	250	550	1056	120	250	418	929	
900	120	250	550	1094	120	250	446	967	
930	120	250	550	1116	120	250	466	989	
950	120	250	550	1120	120	250	479	1003	
1000	120	250	550	1120	120	250	519	1039	
1030	120	250	550	1120	120	250	550	1061	
1050	120	250	550	1120	120	250	550	1075	
1100	120	250	550	1120	120	250	550	1111	
1110	120	250	550	1120	120	250	550	1118	

	Allo	wable GW for FLEX	(1000's o IBLE PC	of lbs.) R	Allowable GW (1000's of lbs.) for RIGID PCR				
PCR(D)	s	D	2D	2D/2D2	s	D	2D	2D/2D2	
20		0.70	17	5	9	~	12		
30	8		37	5	12	2			
40	11	-	1		15	-		10	
50	14	-	1	-	18	-	0	68. 	
60	16	-	-	-	21	-		12	
70	19	0 2 9	22 	2	24	<u> </u>	25	2	
80	21	1029 ⁻	3 <u>2</u>	° 2	26		94 	3	
90	24	38	i i i	8	29	38	92	3	
100	26	41	<u>~</u>		32	41	्य स्ट	3	
110	29	44	<u>_</u>	, ÷	35	44	25	0	
120	32	47	2 4	, ÷.	37	47	85	0	
130	34	49	2 4	. ÷	40	50	8	0	
140	36	52	5 4	÷	42	53			
150	39	55	19		45	55	101		
160	41	57	101	-	47	58	105		
170	44	60	104		50	61	109		
180	46	62	108		52	63	113		
190	49	65	111		55	66	117		
200	51	67	115	-	57	69	121		
220	56	72	122	-	62	74	129		
250	63	80	132		69	82	140		
280	70	89	143		76	90	152		
300	74	94	150	-	80	95	160)	
350	86	110	167	-	91	110	178		
400	97	127	184		102	125	197		
450	108	148	201	5	112	141	218		
470	113	154	209	5	117	148	226		

Table E-4. Subgrade Category D

	Allo	wable GW for FLEX	(1000's o IBLE PC	of lbs.) R	Allowable GW (1000's of lbs.) for RIGID PCR				
PCR(D)	S	D	2D	2D/2D2	s	D	2D	2D/2D2	
490	117	160	216	640	120	154	235	0	
500	120	163	220	646	120	156	239		
550	120	178	239	680	120	170	260	637	
580	120	187	251	700	120	178	272	660	
600	120	193	259	714	120	184	281	676	
630	120	202	270	734	120	192	293	699	
650	120	209	278	748	120	197	302	714	
670	120	215	285	761	120	203	310	730	
690	120	221	293	775	120	208	318	745	
700	120	225	297	781	120	211	322	753	
750	120	241	315	812	120	225	342	792	
770	120	247	323	822	120	230	349	807	
800	120	250	334	838	120	238	362	828	
830	120	250	345	854	120	245	374	850	
840	120	250	349	860	120	248	378	857	
850	120	250	352	865	120	250	382	864	
900	120	250	371	892	120	250	403	900	
930	120	250	382	907	120	250	418	922	
950	120	250	390	918	120	250	428	937	
1000	120	250	414	945	120	250	454	972	
1050	120	250	443	969	120	250	484	1006	
1100	120	250	483	991	120	250	519	1041	
1120	120	250	500	1000	120	250	535	1054	
1150	120	250	550	1012	120	250	550	1075	
1200	120	250	550	1034	120	250	550	1109	
1250	120	250	550	1057	120	250	550	1120	
1300	120	250	550	1078	120	250	550	1120	
1350	120	250	550	1100	120	250	550	1120	

PCR(D)	Allo	wable GW for FLEX	(1000's o IBLE PC	of lbs.) R	Allowable GW (1000's of lbs.) for RIGID PCR				
	S	D	2D	2D/2D2	S	D	2D	2D/2D2	
1390	120	250	550	1118	120	250	550	1120	

INTENTIONALLY LEFT BLANK